[1] Q. Zhao, S. Wang, Y.C. Wu, Y.X. Wang, S.S. Ma, K. Shih, Layered metal sulfides with MaSbc- framework (M = Sb, In, Sn) as ion exchangers for the removal of Cs(Ⅰ) and Sr(Ⅱ) from radioactive effluents: a review, Front. Chem. 11(2023) 1292979. [2] N. Kinoshita, K. Sueki, K. Sasa, J.I. Kitagawa, S. Ikarashi, T. Nishimura, Y.S. Wong, Y. Satou, K. Handa, T. Takahashi, M. Sato, T. Yamagata, Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering central-east Japan, Proc. Natl. Acad. Sci. USA 108(49) (2011) 19526-19529. [3] M. Abed Gatea, G.F. Jumaah, R.H. Al Anbari, Q.F. Alsalhy, Review on decontamination manners of radioactive liquids, Water Air Soil Pollut. 234(10) (2023) 652. [4] S. Inan, Inorganic ion exchangers for strontium removal from radioactive waste: a review, J. Radioanal. Nucl. Chem. 331(3) (2022) 1137-1154. [5] S.M. Sheta, M.A. Hamouda, O.I. Ali, A.T. Kandil, R.R. Sheha, S.M. El-Sheikh, Recent progress in high-performance environmental impacts of the removal of radionuclides from wastewater based on metal-organic frameworks: a review, RSC Adv. 13(36) (2023) 25182-25208. [6] H.L. Ma, M.H. Shen, Y. Tong, X. Wang, Radioactive wastewater treatment technologies: a review, Molecules 28(4) (2023) 1935. [7] M. Hao, Y. Liu, W. Wu, S. Wang, X. Yang, Z. Chen, Z. Tang, Q. Huang, S. Wang, H. Yang, X. Wang, Advanced porous asorbents for rdionuclides eimination, J. Energy Chem. 5(4) (2023) 100101. [8] D.Y. Deng, L.F. Zhang, M. Dong, R.E. Samuel, A. Ofori-Boadu, M. Lamssali, Radioactive waste: a review, Water Environ. Res. 92(10) (2020) 1818-1825. [9] W.J. Wu, Y.T. Xu, X.F. Ma, Z.W. Tian, C.M. Zhang, J.Q. Han, X.S. Han, S.J. He, G.G. Duan, Y.W. Li, Cellulose-based interfacial solar evaporators: structural regulation and performance manipulation, Adv. Funct. Mater. 33(36) (2023) 2302351. [10] R.J. Fu, X.Y. Cao, H.Y. Zhang, L.J. Yang, Z.Q. Zhu, W.D. Liang, J.Y. Li, H.X. Sun, A. Li, High-efficient solar steam generation assisted removal of radioactive iodine ions from water by carbonized conjugated microporous polymer-based photothermal conversion materials, Sep. Purif. Technol. 330(2024) 125283. [11] Y.W. Lv, B.Z. Ma, Y.B. Liu, C.Y. Wang, W.J. Zhang, Y.Q. Chen, Selective extraction of cesium from high concentration rubidium chloride leach liquor of lepidolite, Desalination 530(2022) 115673. [12] Y.Y. Wang, W.J. Duan, R.J. Li, F. Zhang, S.C. Tian, Z.Q. Ren, Z.Y. Zhou, One-step synthesis of heteropolyacid ionic liquid as co-extraction agent for recovery of lithium from aqueous solution with high magnesium/lithium ratio, Desalination 548(2023) 116261. [13] S.J. Park, S.S. Shin, J.H. Jo, C.H. Jung, H. Park, Y.I. Park, H.J. Kim, J.H. Lee, Tannic acid-assisted in situ interfacial formation of Prussian blue-assembled adsorptive membranes for radioactive cesium removal, J. Hazard Mater. 442(2023) 129967. [14] Y.H. Mo, L. Zhang, X. Zhao, J.X. Li, L. Wang, A critical review on classifications, characteristics, and applications of electrically conductive membranes for toxic pollutant removal from water: comparison between composite and inorganic electrically conductive membranes, J. Hazard Mater. 436(2022) 129162. [15] Z.Y. Ye, Y. Zhang, L. Hou, M.L. Zhang, Y.Z. Zhu, Y. Yang, Preparation of a GO/PB-modified nanofiltration membrane for removal of radioactive cesium and strontium from water, Chem. Eng. J. 446(2022) 137143. [16] J.Y. Cui, J.P. Rui, J.W. Meng, F. Wang, H.Q. Feng, Z.J. Ge, A.T. Xie, J.M. Pan, Spraying-induced in situ growth of CaCO3 for the modification of membranes for oil/water separation, New J. Chem. 48(9) (2024) 3785-3788. [17] M. Oh, K. Lee, M.K. Jeon, R.I. Foster, C.H. Lee, Chemical precipitation-based treatment of acidic wastewater generated by chemical decontamination of radioactive concrete, J. Environ. Chem. Eng. 11(5) (2023) 110306. [18] H.N.P. Dayarathne, M.J. Angove, S. Jeong, R. Aryal, S.R. Paudel, B. Mainali, Effect of temperature on turbidity removal by coagulation: sludge recirculation for rapid settling, J. Water Process Eng. 46(2022) 102559. [19] Z.W. Lei, X.W. Li, P.W. Huang, H.M. Hu, Z. Li, Q.W. Zhang, Mechanochemical activation of antigorite to provide active magnesium for precipitating cesium from the existences of potassium and sodium, Appl. Clay Sci. 168(2019) 223-229. [20] J.H. Kim, H. Anwer, Y.S. Kim, J.W. Park, Decontamination of radioactive cesium-contaminated soil/concrete with washing and washing supernatant-critical review, Chemosphere 280(2021) 130419. [21] S.K. Fiskum, L.F. Pease, R.A. Peterson, Review of ion exchange technologies for cesium removal from caustic tank waste, Solvent Extr. Ion Exch. 38(6) (2020) 573-611. [22] J.L. Wang, S.T. Zhuang, Removal of cesium ions from aqueous solutions using various separation technologies, Rev. Environ. Sci. Biotechnol. 18(2) (2019) 231-269. [23] J.H. Tang, S.Q. Jia, J.T. Liu, L. Yang, H.Y. Sun, M.L. Feng, X.Y. Huang, “Ion-imprinting” strategy towards metal sulfide scavenger enables the highly selective capture of radiocesium, Nat. Commun. 15(1) (2024) 4281. [24] J.H. Tang, J.C. Jin, W.A. Li, X. Zeng, W. Ma, J.L. Li, T.T. Lv, Y.C. Peng, M.L. Feng, X.Y. Huang, Highly selective cesium(I) capture under acidic conditions by a layered sulfide, Nat. Commun. 13(1) (2022) 658. [25] C. Liu, Y.J. Li, Q. Liu, J. Liu, Y.F. Guo, X.P. Yu, Y.C. Xie, T.L. Deng, Highly selective and easily regenerated porous fibrous composite of PSF-Na2.1Ni0.05Sn2.95S7 for the sustainable removal of cesium from wastewater, J. Hazard Mater. 436(2022) 129188. [26] A. Ivanets, I. Shashkova, N. Kitikova, A. Dzikaya, N. Nekrasova, V. Milyutin, O. Baigenzhenov, K. Zaruba-Venhlinskaya, A. Radkevich, Composite metal phosphates for selective adsorption and immobilization of cesium, strontium, and cobalt radionuclides in ceramic matrices, J. Clean. Prod. 376(2022) 134104. [27] C.Y. Yang, K. Cho, Rapid and selective removal of Cs+ from water by layered potassium antimony thiostannate, J. Hazard Mater. 403(2021) 124105. [28] J. Yan, B. Zhang, J. Li, Y. Yang, Y.N. Wang, Y.D. Zhang, X.Z. Liu, Rapid and selective uptake of radioactive cesium from water by a microporous zeolitic-like sulfide, Inorg. Chem. 62(32) (2023) 12843-12850. [29] S.Y. Liu, J.H. Zu, G. Han, X.H. Pan, Y. Xue, J.J. Diao, Q. Tang, M.J. Jin, Ammonium phosphomolybdate-modified UiO-66 as an efficient adsorbent for the selective removal of 137Cs from radioactive wastewater, Sep. Purif. Technol. 329(2024) 125073. [30] P.C. Pandey, H.P. Yadav, A.K. Tiwari, S.N. Sawant, P. Sinharoy, D. Banerjee, R.J. Narayan, Prussian blue nanoparticles-mediated sensing and removal of 137Cs, Front. Environ. Sci. 11(2023) 1230983. [31] D. Parajuli, A. Takahashi, H. Noguchi, A. Kitajima, H. Tanaka, M. Takasaki, K. Yoshino, T. Kawamoto, Comparative study of the factors associated with the application of metal hexacyanoferrates for environmental Cs decontamination, Chem. Eng. J. 283(2016) 1322-1328. [32] J.L. Wang, S.T. Zhuang, Y. Liu, Metal hexacyanoferrates-based adsorbents for cesium removal, Coord. Chem. Rev. 374(2018) 430-438. [33] R. Harjula, J. Lehto, E.H. Tusa, A. Paavola, Industrial scale removal of cesium with hexacyanoferrate exchanger-process development, Nucl. Technol. 107(3) (1994) 272-278. [34] L.Q. Peng, L.J. Guo, J.H. Li, W.H. Zhang, B. Shi, X.P. Liao, Rapid and highly selective removal of cesium by Prussian blue analog anchored on porous collagen fibers, Sep. Purif. Technol. 307(2023) 122858. [35] M.A. Busquets, J. Estelrich, Prussian blue nanoparticles: synthesis, surface modification, and biomedical applications, Drug Discov. Today 25(8) (2020) 1431-1443. [36] T. Vincent, C. Vincent, E. Guibal, Immobilization of metal hexacyanoferrate ion-exchangers for the synthesis of metal ion sorbents: a mini-review, Molecules 20(11) (2015) 20582-20613. [37] G.Y. Du, H. Pang, Recent advancements in Prussian blue analogues: preparation and application in batteries, Energy Storage Mater. 36(2021) 387-408. [38] A. Tokarev, P. Agulhon, J. Long, F. Quignard, M. Robitzer, R.A.S. Ferreira, L.D. Carlos, J. Larionova, C. Guerin, Y. Guari, Synthesis and study of Prussian blue type nanoparticles in an alginate matrix, J. Mater. Chem. 22(38) (2012) 20232. [39] H. Tanaka, M. Fujimoto, K. Minami, A. Takahashi, D. Parajuli, T. Hiwatari, M. Kawakami, T. Kawamoto, Ammonium removal and recovery from sewage water using column-system packed highly selective ammonium adsorbent, Environ. Pollut. 284(2021) 117495. [40] J. Qian, L. Zhou, X.F. Yang, D.B. Hua, N. Wu, Prussian blue analogue functionalized magnetic microgels with ionized chitosan for the cleaning of cesium-contaminated clay, J. Hazard Mater. 386(2020) 121965. [41] T. Vincent, C. Vincent, Y. Barre, Y. Guari, G. Le Saout, E. Guibal, Immobilization of metal hexacyanoferrates in chitin beads for cesium sorption: synthesis and characterization, J. Mater. Chem. A 2(26) (2014) 10007-10021. [42] S.T. Zhuang, K.K. Zhu, J. Hu, J.L. Wang, Selective and effective adsorption of cesium ions by metal hexacyanoferrates (MHCF, M = Cu, Co, Ni) modified chitosan fibrous biosorbent, Sci. Total Environ. 835(2022) 155575. [43] J. Bok-Badura, A. Kazek-Kesik, K. Karon, A. Jakobik-Kolon, Highly efficient copper hexacyanoferrate-embedded pectin sorbent for radioactive cesium ions removal, Water Resour. Ind. 28(2022) 100190. [44] Y. Jung, U.S. Choi, Y.G. Ko, Securely anchored Prussian blue nanocrystals on the surface of porous PAAm sphere for high and selective cesium removal, J. Hazard Mater. 420(2021) 126654. [45] X.Y. Peng, J.H. Zheng, J.S. Wang, C. Xiang, R. Wang, Synthesis of hollow mesoporous silica spheres functionalized with copper ferrocyanide and its application for Cs+ removal, Environ. Sci. Pollut. Res. Int. 29(35) (2022) 53509-53521. [46] S. Amin, S.A. Alavi, H. Aghayan, H. Yousefnia, Synthesis and characterization of a novel nanocomposite ([(SBA-15)-(Cu(BTC)]-[KZn(Fe(CN)6)]) for cesium removal from aqueous media and optimization condition using central composite design, Microporous Mesoporous Mater. 345(2022) 112250. [47] C.C. Dong, X.C. Deng, X.Q. Guo, B. Wang, X.S. Ye, J. Fan, C.L. Zhu, F.Y. Fan, B.J. Qing, Synthesis of potassium metal ferrocyanide/Al-MCM-41 with fast and selective adsorption of cesium, Colloids Surf. A Physicochem. Eng. Aspects 613(2021) 126107. [48] P. Rauwel, E. Rauwel, Towards the extraction of radioactive cesium-137 from water via graphene/CNT and nanostructured Prussian blue hybrid nanocomposites: a review, Nanomaterials 9(5) (2019) 682. [49] S.Q. Liu, G.R. Pan, H.S. Yang, Z.F. Cai, F. Zhu, G.F. Ouyang, Determination and elimination of hazardous pollutants by exploitation of a Prussian blue nanoparticles-graphene oxide composite, Anal. Chim. Acta 1054(2019) 17-25. [50] Z.L. Li, Z.H. Zhang, J.B. Cheng, Q.Z. Li, B.Z. Xie, Y. Li, S.B. Yang, Stabilization of Prussian blue analogues using clay minerals for selective removal of cesium, J. Mol. Liq. 345(2022) 117823. [51] S.M. Kang, M. Rethinasabapathy, S.K. Hwang, G.W. Lee, S.C. Jang, C.H. Kwak, S.R. Choe, Y.S. Huh, Microfluidic generation of Prussian blue-laden magnetic micro-adsorbents for cesium removal, Chem. Eng. J. 341(2018) 218-226. [52] H.J. Yang, L. Sun, J.L. Zhai, H.Y. Li, Y. Zhao, H.W. Yu, In situ controllable synthesis of magnetic Prussian blue/graphene oxide nanocomposites for removal of radioactive cesium in water, J. Mater. Chem. A 2(2) (2014) 326-332. [53] A. Grandjean, Y. Barre, A. Hertz, V. Fremy, J. Mascarade, E. Louradour, T. Prevost, Comparing hexacyanoferrate loaded onto silica, silicotitanate and chabazite sorbents for Cs extraction with a continuous-flow fixed-bed setup: methods and pitfalls, Process. Saf. Environ. Prot. 134(2020) 371-380. [54] J.X. Li, Y.X. Zan, Z.P. Zhang, M.L. Dou, F. Wang, Prussian blue nanocubes decorated on nitrogen-doped hierarchically porous carbon network for efficient sorption of radioactive cesium, J. Hazard Mater. 385(2020) 121568. [55] D. Quyet Truong, Y. Choo, N. Akther, S. Roobavannan, A. Norouzi, V. Gupta, M. Blumenstein, T. Vinh Nguyen, G. Naidu, Selective rubidium recovery from seawater with metal-organic framework incorporated potassium cobalt hexacyanoferrate nanomaterial, Chem. Eng. J. 454(2023) 140107. [56] X.Y. Tang, S.Y. Wang, Z.H. Zhang, Z.J. Li, L. Wang, L.Y. Yuan, B.R. Wang, J. Sun, L.R. Zheng, H.Q. Wang, W.Q. Shi, Graphene oxide/chitosan/potassium copper hexacyanoferrate(II) composite aerogel for efficient removal of cesium, Chem. Eng. J. 444(2022) 136397. [57] X.D. Li, G.M. Xu, M. Xia, X.Y. Liu, F.Q. Fan, J.F. Dou, Research on the remediation of cesium pollution by adsorption: insights from bibliometric analysis, Chemosphere 308(Pt 2) (2022) 136445. [58] J. Bikash Baruah, Coordination polymers in adsorptive remediation of environmental contaminants, Coord. Chem. Rev. 470(2022) 214694. [59] Y. Liu, J.H. Pan, N. Wang, F. Steinbach, X. Liu, J. Caro, Remarkably enhanced gas separation by partial self-conversion of a laminated membrane to metal-organic frameworks, Angew. Chem. Int. Ed 54(10) (2015) 3028-3032. [60] Y. Liu, N. Wang, J.H. Pan, F. Steinbach, J. Caro, In situ synthesis of MOF membranes on ZnAl-CO3 LDH buffer layer-modified substrates, J. Am. Chem. Soc. 136(41) (2014) 14353-14356. [61] L. Doumic, G. Salierno, M. Cassanello, P. Haure, M. Ayude, Efficient removal of Orange G using Prussian Blue nanoparticles supported over alumina, Catal. Today 240(2015) 67-72. [62] C. Yang, Y.M. Zhu, J. Wang, W. Sun, L.H. Yang, H. Lin, S.H. Lv, A novel granular MOF composite with dense and ordered MIL-100(Fe) nanoparticles grown on porous alumina: green synthesis and enhanced adsorption of tetracycline hydrochloride, Chem. Eng. J. 426(2021) 131724. [63] Y.W. Shi, L. Huang, S. Mahmud, G.S. Zhang, H.S. Li, Y.Q. Wang, T.F. Xiao, Q.Y. Zeng, Z.Q. Liu, H.R. Yu, Z. Xiong, High-efficiently capturing trace thallium (Ι) from wastewater via the Prussian blue@polytetrafluoroethylene hybrid membranes, Chem. Eng. J. 451(2023) 138712. [64] Q.Q. Tao, X. Zhang, D.J. Huang, G.L. Huang, J.L. Fan, H. Peng, Y. Dai, K. Prabaharan, Copper hexacyanoferrate nanoparticle-decorated biochar produced from pomelo peel for cesium removal from aqueous solution, J. Radioanal. Nucl. Chem. 322(2) (2019) 791-799. [65] M. Shahin, T.U. Ahmed, M.N. Bari, M.A. Sobhan, Effects of soaking on compressive strength of recycled polymer modified asphalt, Int. J. Pavement Eng. 23(5) (2022) 1634-1644. [66] Z. Dong, J.F. Du, Y.L. Chen, M.M. Zhang, L. Zhao, A comparative study of immobilizing ammonium molybdophosphate onto cellulose microsphere by radiation post-grafting and hybrid grafting for cesium removal, Environ. Pollut. 273(2021) 116432. [67] G.R. Parker, Optimum isotherm equation and thermodynamic interpretation for aqueous 1, 1, 2-trichloroethene adsorption isotherms on three adsorbents, Adsorption 1(2) (1995) 113-132. [68] T.Y. Yuan, Q.D. Chen, X.H. Shen, Adsorption of cesium using mesoporous silica gel evenly doped by Prussian blue nanoparticles, Chin. Chem. Lett. 31(10) (2020) 2835-2838. [69] H.A. Alamudy, K. Cho, Selective adsorption of cesium from an aqueous solution by a montmorillonite-Prussian blue hybrid, Chem. Eng. J. 349(2018) 595-602. [70] A. Nesbitt, J. Petersen, A multiple mechanism model for measuring extra- and intraparticle mass transport in ion exchange resins, AlChE. J. 66(1) (2020) e16825. [71] S.Q. Chen, J.Y. Hu, S.J. Han, Y.F. Guo, N. Belzile, T.L. Deng, A review on emerging composite materials for cesium adsorption and environmental remediation on the latest decade, Sep. Purif. Technol. 251(2020) 117340. [72] M.A. Al-Ghouti, D.A. Da’ana, Guidelines for the use and interpretation of adsorption isotherm models: a review, J. Hazard Mater. 393(2020) 122383. [73] S.Q. Chen, X.N. Yang, Z. Wang, J.Y. Hu, S.J. Han, Y.F. Guo, T.L. Deng, Prussian blue analogs-based layered double hydroxides for highly efficient Cs+ removal from wastewater, J. Hazard Mater. 410(2021) 124608. [74] P.A. Haas, A review of information on ferrocyanide solids for removal of cesium from solutions, Sep. Sci. Technol. 28(17-18) (1993) 2479-2506. [75] H.Y. Liu, L.Z. Tong, M.H. Su, D.Y. Chen, G. Song, Y. Zhou, The latest research trends in the removal of cesium from radioactive wastewater: a review based on data-driven and visual analysis, Sci. Total Environ. 869(2023) 161664. |