[1] J. Zhang, D.H. Liao, R.C. Chen, F.F. Zhu, Y.Q. Ma, L. Gao, G. Qu, C.S. Cui, Z.T. Sun, X.G. Lei, S.S. Gao, Tuning an imine reductase for the asymmetric synthesis of azacycloalkylamines by concise structure-guided engineering, Angew. Chem. Int. Ed 61(24) (2022) e202201908. [2] A.I. Benitez-Mateos, D. Roura Padrosa, F. Paradisi, Multistep enzyme cascades as a route towards green and sustainable pharmaceutical syntheses, Nat. Chem. 14(5) (2022) 489-499. [3] M. Rahban, F. Ahmad, M.A. Piatyszek, T. Haertle, L. Saso, A.A. Saboury, Stabilization challenges and aggregation in protein-based therapeutics in the pharmaceutical industry, RSC Adv. 13(51) (2023) 35947-35963. [4] Q. Chen, Y.C. An, M.J. Feng, J.C. Li, Y.J. Li, F.F. Tong, G. Qu, Z.T. Sun, Y.J. Wang, G.S. Luo, An enzyme-assembled gel monolithic microreactor for continuous flow asymmetric synthesis of aryl alcohols, Green Chem. 24(24) (2022) 9508-9518. [5] Q. Chen, G.S. Luo, Y.J. Wang, Orderly cascade of immobilized-enzyme catalysis and photocatalysis for continuous-microflow production of 2-phenylbenzothiazole, Green Chem. 23(18) (2021) 7074-7083. [6] R.A. Sheldon, S. van Pelt, Enzyme immobilisation in biocatalysis: Why, what and how, Chem. Soc. Rev. 42(15) (2013) 6223-6235. [7] D.I. Fried, F.J. Brieler, M. Froba, Designing inorganic porous materials for enzyme adsorption and applications in biocatalysis, ChemCatChem 5(4) (2013) 862-884. [8] S. Hudson, J. Cooney, E. Magner, Proteins in mesoporous silicates, Angew. Chem. Int. Ed 47(45) (2008) 8582-8594. [9] E. Diamanti, F. Lopez-Gallego, Single-particle and single-molecule characterization of immobilized enzymes: A multiscale path toward optimizing heterogeneous biocatalysts, Angew. Chem. Int. Ed 63(20) (2024) e202319248. [10] F. Secundo, Conformational changes of enzymes upon immobilisation, Chem. Soc. Rev. 42(15) (2013) 6250-6261. [11] S.M. Huang, G.S. Chen, G.F. Ouyang, Confining enzymes in porous organic frameworks: From synthetic strategy and characterization to healthcare applications, Chem. Soc. Rev. 51(15) (2022) 6824-6863. [12] G.S. Chen, X.X. Kou, S.M. Huang, L.J. Tong, Y.J. Shen, W.S. Zhu, F. Zhu, G.F. Ouyang, Modulating the biofunctionality of metal-organic-framework-encapsulated enzymes through controllable embedding patterns, Angew. Chem. Int. Ed 59(7) (2020) 2867-2874. [13] S. Liang, X.L. Wu, J. Xiong, M.H. Zong, W.Y. Lou, Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review, Coord. Chem. Rev. 406(2020) 213149. [14] L.J. Tong, S.M. Huang, Y.J. Shen, S.Y. Liu, X.M. Ma, F. Zhu, G.S. Chen, G.F. Ouyang, Atomically unveiling the structure-activity relationship of biomacromolecule-metal-organic frameworks symbiotic crystal, Nat. Commun. 13(1) (2022) 951. [15] C. Sicard, In situ enzyme immobilization by covalent organic frameworks, Angew. Chem. Int. Ed 62(1) (2023) e202213405. [16] N.R. Ye, X.X. Kou, J. Shen, S.M. Huang, G.S. Chen, G.F. Ouyang, Metal-organic frameworks: A new platform for enzyme immobilization, Chembiochem 21(18) (2020) 2585-2590. [17] X.L. Wu, J. Ge, C. Yang, M. Hou, Z. Liu, Facile synthesis of multiple enzyme-containing metal-organic frameworks in a biomolecule-friendly environment, Chem. Commun. 51(69) (2015) 13408-13411. [18] N. Li, H. Xia, Y.B. Jiang, J. Xiong, W.Y. Lou, Co-immobilization of β-xylosidase and endoxylanase on zirconium based metal-organic frameworks for improving xylosidase activity at high temperature and in acetone, Bioresour. Technol. 383(2023) 129240. [19] R.B. Lin, Y.B. He, P. Li, H.L. Wang, W. Zhou, B.L. Chen, Multifunctional porous hydrogen-bonded organic framework materials, Chem. Soc. Rev. 48(5) (2019) 1362-1389. [20] P.H. Li, M.R. Ryder, J.F. Stoddart, Hydrogen-bonded organic frameworks: A rising class of porous molecular materials, Acc. Mater. Res. 1(1) (2020) 77-87. [21] H. Xia, N. Li, W.Q. Huang, Y. Song, Y.B. Jiang, Enzymatic cascade reactions mediated by highly efficient biomimetic quasi metal-organic frameworks, ACS Appl. Mater. Interfaces 13(19) (2021) 22240-22253. [22] M. Cao, J. Yu, X. Zhang, Y.M. Lin, H. Huang, Laccase-functionalized magnetic framework composite enabled chlorophenols degradation, a potential remediation for fungicides residues in leather, J. Leather Sci. Eng. 4(1) (2022) 21. [23] W.B. Liang, H.S. Xu, F. Carraro, N.K. Maddigan, Q.W. Li, S.G. Bell, D.M. Huang, A. Tarzia, M.B. Solomon, H. Amenitsch, L. Vaccari, C.J. Sumby, P. Falcaro, C.J. Doonan, Enhanced activity of enzymes encapsulated in hydrophilic metal-organic frameworks, J. Am. Chem. Soc. 141(6) (2019) 2348-2355. [24] Y.M. Li, J. Yuan, H. Ren, C.Y. Ji, Y. Tao, Y.H. Wu, L.Y. Chou, Y.B. Zhang, L. Cheng, Fine-tuning the micro-environment to optimize the catalytic activity of enzymes immobilized in multivariate metal-organic frameworks, J. Am. Chem. Soc. 143(37) (2021) 15378-15390. [25] P. Li, Q.S. Chen, T.C. Wang, N.A. Vermeulen, B.L. Mehdi, A. Dohnalkova, N.D. Browning, D.K. Shen, R. Anderson, D.A. Gomez-Gualdron, F.M. Cetin, J. Jagiello, A.M. Asiri, J.F. Stoddart, O.K. Farha, Hierarchically engineered mesoporous metal-organic frameworks toward cell-free immobilized enzyme systems, Chem 4(5) (2018) 1022-1034. [26] G.S. Chen, S.M. Huang, X.X. Kou, F. Zhu, G.F. Ouyang, Embedding functional biomacromolecules within peptide-directed metal-organic framework (MOF) nanoarchitectures enables activity enhancement, Angew. Chem. Int. Ed 59(33) (2020) 13947-13954. [27] J.Y. Liang, K. Liang, Multi-enzyme cascade reactions in metal-organic frameworks, Chem. Rec. 20(10) (2020) 1100-1116. [28] X.G. Yang, J.R. Zhang, X.K. Tian, J.H. Qin, X.Y. Zhang, L.F. Ma, Enhanced activity of enzyme immobilized on hydrophobic ZIF-8 modified by Ni2+ ions, Angew. Chem. Int. Ed 62(7) (2023) e202216699. [29] Y.F. Cao, J. Ge, Hybrid enzyme catalysts synthesized by a de novo approach for expanding biocatalysis, Chin. J. Catal. 42(10) (2021) 1625-1633. [30] F.J. Lyu, Y.F. Zhang, R.N. Zare, J. Ge, Z. Liu, One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities, Nano Lett. 14(10) (2014) 5761-5765. [31] X.L. Wu, H. Yue, Y.Y. Zhang, X.Y. Gao, X.Y. Li, L.C. Wang, Y.F. Cao, M. Hou, H.X. An, L. Zhang, S. Li, J.Y. Ma, H. Lin, Y.N. Fu, H.K. Gu, W.Y. Lou, W. Wei, R.N. Zare, J. Ge, Packaging and delivering enzymes by amorphous metal-organic frameworks, Nat. Commun. 10(2019) 5165. [32] Q. Sun, C.W. Fu, B. Aguila, J. Perman, S. Wang, H.Y. Huang, F.S. Xiao, S.Q. Ma, Pore environment control and enhanced performance of enzymes infiltrated in covalent organic frameworks, J. Am. Chem. Soc. 140(3) (2018) 984-992. [33] Y.L. Zheng, S.N. Zhang, J.B. Guo, R.X. Shi, J.Y. Yu, K.P. Li, N. Li, Z.J. Zhang, Y. Chen, Green and scalable fabrication of high-performance biocatalysts using covalent organic frameworks as enzyme carriers, Angew. Chem. Int. Ed 61(39) (2022) e202208744. [34] Y.F. Zhang, C.Y. Xing, Z.J. Mu, Z.R. Niu, X. Feng, Y.Y. Zhang, B. Wang, Harnessing self-repairing and crystallization processes for effective enzyme encapsulation in covalent organic frameworks, J. Am. Chem. Soc. 145(24) (2023) 13469-13475. [35] D.Q. Yu, H.C. Zhang, J.S. Ren, X.G. Qu, Hydrogen-bonded organic frameworks: New horizons in biomedical applications, Chem. Soc. Rev. 52(21) (2023) 7504-7523. [36] Y.L. Li, E.V. Alexandrov, Q. Yin, L. Li, Z.B. Fang, W.B. Yuan, D.M. Proserpio, T.F. Liu, Record complexity in the polycatenation of three porous hydrogen-bonded organic frameworks with stepwise adsorption behaviors, J. Am. Chem. Soc. 142(15) (2020) 7218-7224. [37] P. Wied, F. Carraro, J.M. Bolivar, C.J. Doonan, P. Falcaro, B. Nidetzky, Combining a genetically engineered oxidase with hydrogen-bonded organic frameworks (HOFs) for highly efficient biocomposites, Angew. Chem. Int. Ed 61(16) (2022) e202117345. [38] Q. Yin, P. Zhao, R.J. Sa, G.C. Chen, J. Lu, T.F. Liu, R. Cao, An ultra-robust and crystalline redeemable hydrogen-bonded organic framework for synergistic chemo-photodynamic therapy, Angew. Chem. Int. Ed 57(26) (2018) 7691-7696. [39] P. Cui, Q. Zhu, F.F. Zhang, D.N. Liu, W.S. Zhu, Selective adsorption of polycyclic aromatic hydrocarbons by isostructural hydrogen-bonded organic frameworks, Chem. Commun. 59(80) (2023) 12031-12034. [40] W.B. Liang, F. Carraro, M.B. Solomon, S.G. Bell, H. Amenitsch, C.J. Sumby, N.G. White, P. Falcaro, C.J. Doonan, Enzyme encapsulation in a porous hydrogen-bonded organic framework, J. Am. Chem. Soc. 141(36) (2019) 14298-14305. [41] G.S. Chen, S.M. Huang, Y. Shen, X.X. Kou, X.M. Ma, S.Y. Huang, Q. Tong, K.L. Ma, W. Chen, P.Y. Wang, J. Shen, F. Zhu, G.F. Ouyang, Protein-directed, hydrogen-bonded biohybrid framework, Chem 7(10) (2021) 2722-2742. [42] U. Hanefeld, F. Hollmann, C.E. Paul, Biocatalysis making waves in organic chemistry, Chem. Soc. Rev. 51(2) (2022) 594-627. [43] S. Burgener, N.S. Cortina, T.J. Erb, Oxalyl-CoA decarboxylase enables nucleophilic one-carbon extension of aldehydes to chiral α-hydroxy acids, Angew. Chem. Int. Ed 59(14) (2020) 5526-5530. [44] Y.D. Zhang, Z.H. Li, X.Y. Liu, X.Y. Chen, S.J. Zhang, Y.M. Chen, J.N. Chen, J. Chen, F.Q. Wu, G.Q. Chen, 3-Hydroxybutyrate ameliorates insulin resistance by inhibiting PPARγ Ser273 phosphorylation in type 2 diabetic mice, Signal Transduct. Target. Ther. 8(1) (2023) 190. [45] X.C. Wei, X.Y. Yue, Q. Yuan, Y. He, L. Ma, L.Y. Zhou, G.H. Liu, Y.T. Liu, Y.J. Jiang, Multigram synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate in a monophasic aqueous system using a robust NADH-dependent alcohol dehydrogenase from Pseudomonas bacterium, Mol. Catal. 559(2024) 114067. [46] X.Y. Chen, Z. Dou, T.W. Luo, Z.W. Sun, H.M. Ma, G.C. Xu, Y. Ni, Directed reconstruction of a novel ancestral alcohol dehydrogenase featuring shifted pH-profile, enhanced thermostability and expanded substrate spectrum, Bioresour. Technol. 363(2022) 127886. [47] G.S. Chen, S.M. Huang, X.X. Kou, S.B. Wei, S.Y. Huang, S.Q. Jiang, J. Shen, F. Zhu, G.F. Ouyang, A convenient and versatile amino-acid-boosted biomimetic strategy for the nondestructive encapsulation of biomacromolecules within metal-organic frameworks, Angew. Chem. Int. Ed 58(5) (2019) 1463-1467. [48] G.S. Chen, S.M. Huang, X.M. Ma, R.W. He, G.F. Ouyang, Encapsulating and stabilizing enzymes using hydrogen-bonded organic frameworks, Nat. Protoc. 18(2023) 2032-2050. [49] W. Huang, H.T. Yuan, H.S. Yang, X.M. Ma, S.Y. Huang, H.J. Zhang, S.M. Huang, G.S. Chen, G.F. Ouyang, Green synthesis of stable hybrid biocatalyst using a hydrogen-bonded, π-π-stacking supramolecular assembly for electrochemical immunosensor, Nat. Commun. 14(1) (2023) 3644. [50] G.S. Chen, L.J. Tong, S.M. Huang, S.Y. Huang, F. Zhu, G.F. Ouyang, Hydrogen-bonded organic framework biomimetic entrapment allowing non-native biocatalytic activity in enzyme, Nat. Commun. 13(2022) 4816. [51] H.S. Yang, J.H. Fu, W. Huang, T. Wu, S.M. Huang, G.S. Chen, G.F. Ouyang, Self-propelled, high-crystalline hydrogen-bonded enzymatic framework assembled by bottom-up strategy, Small Struct. 4(7) (2023) 2200346. [52] C.P. Lin, K.L. Xu, R.C. Zheng, Y.G. Zheng, Immobilization of amidase into a magnetic hierarchically porous metal-organic framework for efficient biocatalysis, Chem. Commun. 55(40) (2019) 5697-5700. [53] J.C. Diaz, B. Lozano-Torres, M. Gimenez-Marques, Boosting protein encapsulation through lewis-acid-mediated metal-organic framework mineralization: Toward effective intracellular delivery, Chem. Mater. 34(17) (2022) 7817-7827. [54] J. Phipps, H. Chen, C. Donovan, D. Dominguez, S. Morgan, B. Weidman, C.G. Fan, H. Beyzavi, Catalytic activity, stability, and loading trends of alcohol dehydrogenase enzyme encapsulated in a metal-organic framework, ACS Appl. Mater. Interfaces 12(23) (2020) 26084-26094. [55] A.L. Huang, L.J. Tong, X.X. Kou, R. Gao, Z.W. Li, S.M. Huang, F. Zhu, G.S. Chen, G.F. Ouyang, Structural and functional insights into the biomineralized zeolite imidazole frameworks, ACS Nano 17(23) (2023) 24130-24140. [56] N.W.J.T. Heinsman, M.C.R. Franssen, A. van der Padt, R.M. Boom, K. van’t Riet, A. de Groot, Lipase-mediated resolution of branched chain fatty acids, Biocatal. Biotransform. 20(5) (2002) 297-309. [57] P.B. Juhl, K. Doderer, F. Hollmann, O. Thum, J. Pleiss, Engineering of Candida Antarctica lipase B for hydrolysis of bulky carboxylic acid esters, J. Biotechnol. 150(4) (2010) 474-480. |