中国化学工程学报 ›› 2024, Vol. 68 ›› Issue (4): 103-119.DOI: 10.1016/j.cjche.2023.11.027
Shaoqi Zhang, Tao Liu, Zhenyu Chu, Wanqin Jin
收稿日期:
2023-08-10
修回日期:
2023-10-27
出版日期:
2024-04-28
发布日期:
2024-06-28
通讯作者:
Zhenyu Chu,E-mail address:zychu@njtech.edu.cn;Wanqin Jin,E-mail address:wqjin@njtech.edu.cn
基金资助:
Shaoqi Zhang, Tao Liu, Zhenyu Chu, Wanqin Jin
Received:
2023-08-10
Revised:
2023-10-27
Online:
2024-04-28
Published:
2024-06-28
Contact:
Zhenyu Chu,E-mail address:zychu@njtech.edu.cn;Wanqin Jin,E-mail address:wqjin@njtech.edu.cn
Supported by:
摘要: Dissolved oxygen (DO) usually refers to the amount of oxygen dissolved in water. In the environment, medicine, and fermentation industries, the DO level needs to be accurate and capable of online monitoring to guide the precise control of water quality, clinical treatment, and microbial metabolism. Compared with other analytical methods, the electrochemical strategy is superior in its fast response, low cost, high sensitivity, and portable device. However, an electrochemical DO sensor faces a trade-off between sensitivity and long-term stability, which strongly limits its practical applications. To solve this problem, various advanced nanomaterials have been proposed to promote detection performance owing to their excellent electrocatalysis, conductivity, and chemical stability. Therefore, in this review, we focus on the recent progress of advanced nanomaterial-based electrochemical DO sensors. Through the comparison of the working principles on the main analysis techniques toward DO, the advantages of the electrochemical method are discussed. Emphasis is placed on recently developed nanomaterials that exhibit special characteristics, including nanostructures and preparation routes, to benefit DO determination. Specifically, we also introduce some interesting research on the configuration design of the electrode and device, which is rarely introduced. Then, the different requirements of the electrochemical DO sensors in different application fields are included to provide brief guidance on the selection of appropriate nanomaterials. Finally, the main challenges are evaluated to propose future development prospects and detection strategies for nanomaterial-based electrochemical sensors.
Shaoqi Zhang, Tao Liu, Zhenyu Chu, Wanqin Jin. Recent progress on nanomaterial-based electrochemical dissolved oxygen sensors[J]. 中国化学工程学报, 2024, 68(4): 103-119.
Shaoqi Zhang, Tao Liu, Zhenyu Chu, Wanqin Jin. Recent progress on nanomaterial-based electrochemical dissolved oxygen sensors[J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 103-119.
[1] J. X. Zhai, L. Cong, G. X. Yan, Y. N. Wu, J. K. Liu, Y. Wang, Z. M. Zhang, M. X. Zhang, Influence of fungi and bag mesh size on litter decomposition and water quality, Environ. Sci. Pollut. Res. Int. 26(18) (2019) 18304-18315. [2] P.K. Rai, M. Islam, A. Gupta, Microfluidic devices for the detection of contamination in water samples: A review, Sens. Actuat. A Phys. 347(2022) 113926. [3] S.N. Zulkifli, H.A. Rahim, W.J. Lau, Detection of contaminants in water supply: A review on state-of-the-art monitoring technologies and their applications, Sens. Actuators B Chem. 255(2018) 2657-2689. [4] I. Tubia, K. Prasad, E. Perez-Lorenzo, C. Abadin, M. Zumarraga, I. Oyanguren, F. Barbero, J. Paredes, S. Arana, Beverage spoilage yeast detection methods and control technologies: A review of Brettanomyces, Int. J. Food Microbiol. 283(2018) 65-76. [5] X. Mo, X. L. Wang, Z. Q. Zhu, Y. T. Yu, D. Chang, X. X. Zhang, D. Li, F. Y. Sun, L. Zhou, J. Xu, H. Zhang, C. F. Gao, M. Guan, Y. Q. Xiao, W. J. Wu, Quality management for point-of-care testing of pathogen nucleic acids: Chinese expert consensus, Front. Cell. Infect. Microbiol. 11(2021) 755508. [6] A. Carvalho, R. Costa, S. Neves, C.M. Oliveira, R.J.N. Bettencourt da Silva, Determination of dissolved oxygen in water by the Winkler method: Performance modelling and optimisation for environmental analysis, Microchem. J. 165(2021) 106129. [7] Y. K. Zhao, H. X. Zhang, Q. W. Jin, D. G. Jia, T. G. Liu, Ratiometric optical fiber dissolved oxygen sensor based on fluorescence quenching principle, Sensors 22(13) (2022) 4811. [8] X.Q. Li, L.W. Wang, L. Fan, Z.Y. Cui, M.X. Sun, Effect of temperature and dissolved oxygen on the passivation behavior of Ti-6Al-3Nb-2Zr-1Mo alloy in artificial seawater, J. Mater. Res. Technol. 17(2022) 374-391. [9] L.W. Winkler, Die bestimmung des im wasser gelosten sauerstoffes, Ber. Dtsch. Chem. Ges. 21(2) (1888) 2843-2854. [10] Y. Liu, Y. Deng, H.M. Dong, K.K. Liu, N.Y. He, Progress on sensors based on nanomaterials for rapid detection of heavy metal ions, Sci. China Chem. 60(3) (2017) 329-337. [11] D.Y. Kim, D.G. Kim, B. Jeong, Y.I. Kim, J. Heo, H.K. Lee, Reusable and pH-stable luminescent sensors for highly selective detection of phosphate, Polymers 14(1) (2022) 190. [12] B.Y. Song, M.J. Li, Y. He, S. Yao, D. Huang, Electrochemical method for dissolved oxygen consumption on-line in tubular photobioreactor, Energy 177(2019) 158-166. [13] E.B. Silva, P.V.F. Pinto, J.B. Chretien, J.I.S. Miranda, H.A. Pinho, A.P. Timbo, W.B. Fraga, J.W.M. Menezes, M.E.R. Silva, G. de Freitas Guimarares, Green optical dissolved oxygen sensor based on a chlorophyll-zinc complex extracted from the plant Brassica oleracea L, Appl. Opt. 56(36) (2017) 9951-9956. [14] N.K. Zaitsev, V.I. Dvorkin, P.V. Melnikov, A.E. Kozhukhova, A dissolved oxygen analyzer with an optical sensor, J. Anal. Chem. 73(1) (2018) 102-108. [15] R. Rajeev, R. Datta, A. Varghese, Y.N. Sudhakar, L. George, Recent advances in bimetallic based nanostructures: Synthesis and electrochemical sensing applications, Microchem. J. 163(2021) 105910. [16] J. Linnemann, K. Kanokkanchana, K. Tschulik, Design strategies for electrocatalysts from an electrochemist's perspective, ACS Catal. 11(9) (2021) 5318-5346. [17] Q.S. Ding, H.J. Tai, D.K. Ma, D.L. Li, L.L. Zhao, Development of a smart dissolved oxygen sensor based on IEEE1451.2, Sens. Lett. 9(3) (2011) 1049-1054. [18] P. Wang, Y. Liu, H.D. Abruna, J.A. Spector, W.L. Olbricht, Micromachined dissolved oxygen sensor based on solid polymer electrolyte, Sens. Actuat. B Chem. 153(1) (2011) 145-151. [19] C.W. Huang, C. Lin, M.K. Nguyen, A. Hussain, X.T. Bui, H.H. Ngo, A review of biosensor for environmental monitoring: Principle, application, and corresponding achievement of sustainable development goals, Bioengineered 14(1) (2023) 58-80. [20] T. Loffler, H. Meyer, A. Savan, P. Wilde, A. Garzon Manjon, Y.T. Chen, E. Ventosa, C. Scheu, A. Ludwig, W. Schuhmann, Discovery of a multinary noble metal-free oxygen reduction catalyst, Adv. Energy Mater. 8(34) (2018) 1802269. [21] D. Zhang, Y.X. Fang, Z.Y. Miao, M. Ma, Q. Chen, Electrochemical determination of dissolved oxygen based on three dimensional electrosynthesis of silver nanodendrites electrode, J. Appl. Electrochem. 44(3) (2014) 419-425. [22] I. Cakar, K.V. Ozdokur, B. Demir, E. Yavuz, D.O. Demirkol, S. Kocak, S. Timur, F.N. Ertas, Molybdenum oxide/platinum modified glassy carbon electrode: A novel electrocatalytic platform for the monitoring of electrochemical reduction of oxygen and its biosensing applications, Sens. Actuat. B Chem. 185(2013) 331-336. [23] V. Forest, Combined effects of nanoparticles and other environmental contaminants on human health - an issue often overlooked, NanoImpact 23(2021) 100344. [24] X.Y. Xu, B. Yan, Nanoscale LnMOF-functionalized nonwoven fibers protected by a polydimethylsiloxane coating layer as a highly sensitive ratiometric oxygen sensor, J. Mater. Chem. C 4(36) (2016) 8514-8521. [25] L. Hsu, P.R. Selvaganapathy, J. Brash, Q.Y. Fang, C.Q. Xu, M.J. Deen, H. Chen, Development of a low-cost hemin-based dissolved oxygen sensor with anti-biofouling coating for water monitoring, IEEE Sens. J. 14(10) (2014) 3400-3407. [26] N. Talukder, Y.D. Wang, B.B. Nunna, E.S. Lee, Nitrogen-doped graphene nanomaterials for electrochemical catalysis/reactions: A review on chemical structures and stability, Carbon 185(2021) 198-214. [27] T. Dang, Y. Maeda, Y. Fujii, N. Takenaka, Optimization of procedure for determining dissolved oxygen in surface water and seawater exploiting the UV-vis absorption of Mn(III) species, Anal. Sci. 37(11) (2021) 1517-1523. [28] A. Shriwastav, G. Sudarsan, P. Bose, V. Tare, A modified Winkler’s method for determination of dissolved oxygen concentration in water: Dependence of method accuracy on sample volume, Measurement 106(2017) 190-195. [29] Z.Y. Zhang, Z.P. Chen, F.B. Cheng, Y.W. Zhang, L.X. Chen, Iodine-mediated etching of gold nanorods for plasmonic sensing of dissolved oxygen and salt iodine, Analyst 141(10) (2016) 2955-2961. [30] I. Bergman, Rapid-response Atmospheric Oxygen Monitor based on Fluorescence Quenching, Nature 218(1968) 396. [31] Y. Nan, J.J. Shao, D. Li, X. Guo, M. Willatzen, Z.L. Wang, Physical mechanisms of contact-electrification induced photon emission spectroscopy from interfaces, Nano Res. 16(9) (2023) 11545-11555. [32] L. Ge, Z.H. Zhu, F. Li, S.M. Liu, L. Wang, X.G. Tang, V. Rudolph, Investigation of gas permeability in carbon nanotube (CNT)-polymer matrix membranes via modifying CNTs with functional groups/metals and controlling modification location, J. Phys. Chem. C 115(14) (2011) 6661-6670. [33] R.S. Chen, A.D. Farmery, A. Obeid, C.E.W. Hahn, A cylindrical-core fiber-optic oxygen sensor based on fluorescence quenching of a platinum complex immobilized in a polymer matrix, IEEE Sens. J. 12(1) (2012) 71-75. [34] H. Lee, W. Shin, H.J. Kim, J. Kim, Turn-on fluorescence sensing of oxygen with dendrimer-encapsulated platinum nanoparticles as tunable oxidase mimics for spatially resolved measurement of oxygen gradient in a human gut-on-a-chip, Anal. Chem. 93(48) (2021) 16123-16132. [35] H.L. Zhang, T. Liu, Q.H. Li, X.Y. Zhang, H. Zhao, Y.D. Zheng, F. Qin, Z.G. Zhang, T.Q. Sheng, Y. Tian, Large-scale sensitivity adjustment for Gd-HMME room temperature phosphorescence oxygen sensing, Spectrochim. Acta A Mol. Biomol. Spectrosc. 267(Pt 1) (2022) 120490. [36] L.S.S. Santos, R. Landers, Y. Gushikem, Application of manganese (II) phthalocyanine synthesized in situ in the SiO2/SnO2 mixed oxide matrix for determination of dissolved oxygen by electrochemical techniques, Talanta 85(2) (2011) 1213-1216. [37] Y.G. Wei, Y.S. Jiao, D. An, D.L. Li, W.S. Li, Q. Wei, Review of dissolved oxygen detection technology: From laboratory analysis to online intelligent detection, Sensors 19(18) (2019) 3995. [38] S.F. Ren, J.L. Zeng, Z.X. Zheng, H.Q. Shi, Perspective and application of modified electrode material technology in electrochemical voltammetric sensors for analysis and detection of illicit drugs, Sens. Actuat. A Phys. 329(2021) 112821. [39] S.M. Silva, L.F. Aguiar, R.M.S. Carvalho, A.A. Tanaka, F.S. Damos, R.C.S. Luz, A glassy carbon electrode modified with an iron N4-macrocycle and reduced graphene oxide for voltammetric sensing of dissolved oxygen, Microchim. Acta 183(3) (2016) 1251-1259. [40] P. Zimmermann, A. Weltin, G.A. Urban, J. Kieninger, Active potentiometry for dissolved oxygen monitoring with platinum electrodes, Sensors 18(8) (2018) 2404. [41] G.T. Huynh, V. Kesarwani, J.A. Walker, J.E. Frith, L. Meagher, S.R. Corrie, Review: Nanomaterials for reactive oxygen species detection and monitoring in biological environments, Front. Chem. 9(2021) 728717. [42] J.J. Feng, A.Q. Li, Z. Lei, A.J. Wang, Low-potential synthesis of "clean" Au nanodendrites and their high performance toward ethanol oxidation, ACS Appl. Mater. Interfaces 4(5) (2012) 2570-2576. [43] D.B. Chen, D. Wang, X. Hu, G. Long, Y.Q. Zhang, L.D. Zhou, A DNA nanostructured biosensor for electrochemical analysis of HER2 using bioconjugate of GNR@Pd SSs-apt-HRP, Sens. Actuat. B Chem. 296(2019) 126650. [44] J. Chen, M. Yang, Q. Zhang, E.C. Cho, C.M. Cobley, C. Kim, C. Glaus, L.V. Wang, M.J. Welch, Y. Xia, Gold nanocages: A novel class of multifunctional nanomaterials for theranostic applications, Adv. Funct. Mater. 20(21) (2010) 3684-3694. [45] A. Sukeri, L.P.H. Saravia, M. Bertotti, A facile electrochemical approach to fabricate a nanoporous gold film electrode and its electrocatalytic activity towards dissolved oxygen reduction, Phys. Chem. Chem. Phys. 17(43) (2015) 28510-28514. [46] C.G. Sanz, A.C. Mihaila, A. Evanghelidis, V.C. Diculescu, E. Butoi, M.M. Barsan, Quantification of cell oxygenation in 2D constructs of metallized electrospun polycaprolactone fibers encapsulating human valvular interstitial cells, J. Electroanal. Chem. 905(2022) 116005. [47] K. Zhang, M.Q. Wang, T. Liu, Z.Y. Chu, W.Q. Jin, Scalable printing of Prussian blue Analogue@Au edge-rich microcubes as flexible biosensing microchips performing ultrasensitive sucrose fermentation monitoring, ACS Appl. Mater. Interfaces 14(36) (2022) 40569-40578. [48] E.L. Silva, A.C. Bastos, M.A. Neto, R.F. Silva, M.L. Zheludkevich, M.G.S. Ferreira, F.J. Oliveira, Boron doped nanocrystalline diamond microelectrodes for the detection of Zn2+ and dissolved O2, Electrochim. Acta 76(2012) 487-494. [49] Y. Liu, Y.L. Yan, J.P. Lei, F. Wu, H.X. Ju, Functional multiwalled carbon nanotube nanocomposite with iron picket-fence porphyrin and its electrocatalytic behavior, Electrochem. Commun. 9(10) (2007) 2564-2570. [50] T. Liu, Y. Xie, L. Shi, Y. Liu, Z.Y. Chu, W.Q. Jin, 3D Prussian blue/Pt decorated carbon nanofibers based screen-printed microchips for the ultrasensitive hydroquinone biosensing, Chin. J. Chem. Eng. 37(2021) 105-113. [51] T.Z. Wu, M.Y. Han, Z.J. Xu, Size effects of electrocatalysts: More than a variation of surface area, ACS Nano 16(6) (2022) 8531-8539. [52] J. Quinson, S. Kunz, M. Arenz, Surfactant-free colloidal syntheses of precious metal nanoparticles for improved catalysts, ACS Catal. 13(7) (2023) 4903-4937. [53] G.P. Chen, S.K. Singh, K. Takeyasu, J.P. Hill, J. Nakamura, K. Ariga, Versatile nanoarchitectonics of Pt with morphology control of oxygen reduction reaction catalysts, Sci. Technol. Adv. Mater. 23(1) (2022) 413-423. [54] M. Faruk Hossain, S. McCracken, G. Slaughter, Electrochemical laser induced graphene-based oxygen sensor, J. Electroanal. Chem. 899(2021) 115690. [55] J.F. Xia, S. Sonkusale, Flexible thread-based electrochemical sensors for oxygen monitoring, Analyst 146(9) (2021) 2983-2990. [56] S.H. Yin, J. Yang, Y. Han, G. Li, L.Y. Wan, Y.H. Chen, C. Chen, X.M. Qu, Y.X. Jiang, S.G. Sun, Construction of highly active metal-containing nanoparticles and FeCo-N4 composite sites for the acidic oxygen reduction reaction, Angew. Chem. Int. Ed Engl. 59(49) (2020) 21976-21979. [57] Y.P. Yang, X.C. Xu, P.P. Sun, H.X. Xu, L. Yang, X.F. Zeng, Y. Huang, S.T. Wang, D.P. Cao, AgNPs@Fe-N-C oxygen reduction catalysts for anion exchange membrane fuel cells, Nano Energy 100(2022) 107466. [58] P. Yu, J. Yan, H. Zhao, L. Su, J. Zhang, L.Q. Mao, Rational functionalization of carbon nanotube/ionic liquid bucky gel with dual tailor-made electrocatalysts for four-electron reduction of oxygen, J. Phys. Chem. C 112(6) (2008) 2177-2182. [59] L. Fu, Y.H. Zheng, Z.X. Fu, A.W. Wang, W. Cai, Dissolved oxygen detection by galvanic displacement-induced graphene/silver nanocomposite, Bull. Mater. Sci. 38(3) (2015) 611-616. [60] S. Bhunia, A. Ghatak, A. Dey, Second sphere effects on oxygen reduction and peroxide activation by mononuclear iron porphyrins and related systems, Chem. Rev. 122(14) (2022) 12370-12426. [61] F.S. Damos, R.C.S. Luz, A.A. Tanaka, L.T. Kubota, Dissolved oxygen amperometric sensor based on layer-by-layer assembly using host-guest supramolecular interactions, Anal. Chim. Acta 664(2) (2010) 144-150. [62] H.Y. Lei, J.M. Lu, G.Q. Dong, G.F. Tian, S.L. Qi, D.Z. Wu, Design and synthesis of novel porphyrinated polyimide nanofibers as dissolved oxygen sensor: The role of electro-activity and orientation, Dyes Pigm. 161(2019) 79-88. [63] L. Sun, B.L. Liao, D. Sheberla, D. Kraemer, J.W. Zhou, E.A. Stach, D. Zakharov, V. Stavila, A.A. Talin, Y.C. Ge, M.D. Allendorf, G. Chen, F. Leonard, M. Dinca, A microporous and naturally nanostructured thermoelectric metal-organic framework with ultralow thermal conductivity, Joule 1(1) (2017) 168-177. [64] X.F. Lu, L. Yu, J. Zhang, X.W.D. Lou, Ultrafine dual-phased carbide nanocrystals confined in porous nitrogen-doped carbon dodecahedrons for efficient hydrogen evolution reaction, Adv. Mater. 31(30) (2019) e1900699. [65] L.P.H. Saravia, A. Sukeri, J.M. Goncalves, J.S. Aguirre-Araque, B.B.N.S. Brandao, T.A. Matias, M. Nakamura, K. Araki, H.E. Toma, M. Bertotti, CoTRP/Graphene oxide composite as efficient electrode material for dissolved oxygen sensors, Electrochim. Acta 222(2016) 1682-1690. [66] S.T. Madrahimov, J.R. Gallagher, G.H. Zhang, Z. Meinhart, S.J. Garibay, M. Delferro, J.T. Miller, O.K. Farha, J.T. Hupp, S.T. Nguyen, Gas-phase dimerization of ethylene under mild conditions catalyzed by MOF materials containing (bpy) NiII complexes, ACS Catal. 5(11) (2015) 6713-6718. [67] L. Feng, K.Y. Wang, X.L. Lv, J.A. Powell, T.H. Yan, J. Willman, H.C. Zhou, Imprinted apportionment of functional groups in multivariate metal-organic frameworks, J. Am. Chem. Soc. 141(37) (2019) 14524-14529. [68] Z.Z. Liang, H.B. Guo, G.J. Zhou, K. Guo, B. Wang, H.T. Lei, W. Zhang, H.Q. Zheng, U.P. Apfel, R. Cao, Metal-organic-framework-supported molecular electrocatalysis for the oxygen reduction reaction, Angew. Chem. Int. Ed Engl. 60(15) (2021) 8472-8476. [69] R.X. Tu, Y.J. Wang, J.Y. Peng, C.T. Hou, Z.H. Wang, Integration of multiple redox centers into porous coordination networks for ratiometric sensing of dissolved oxygen, ACS Appl. Mater. Interfaces 13(34) (2021) 40847-40852. [70] Y.X. Wang, M. Rinawati, W.H. Huang, Y.S. Cheng, P.H. Lin, K.J. Chen, L.Y. Chang, K.C. Ho, W.N. Su, M.H. Yeh, Surface-engineered N-doped carbon nanotubes with B-doped graphene quantum dots: Strategies to develop highly-efficient noble metal-free electrocatalyst for online-monitoring dissolved oxygen biosensor, Carbon 186(2022) 406-415. [71] A. Gopalakrishnan, S. Badhulika, Effect of self-doped heteroatoms on the performance of biomass-derived carbon for supercapacitor applications, J. Power Sources 480(2020) 228830. [72] X.Y. Liang, G.L. Zhang, Y. Shang, Z.D. Yang, X.C. Zeng, Polysilane-wrapped carbon and boron-nitride nanotubes: Effects of B or P doping on electron transport, J. Phys. Chem. C 120(10) (2016) 5741-5754. [73] Y.J. Zhang, L.H. Lu, S. Zhang, Z.Z. Lv, D.T. Yang, J.H. Liu, Y. Chen, X.C. Tian, H.Y. Jin, W.G. Song, Biomass chitosan derived cobalt/nitrogen doped carbon nanotubes for the electrocatalytic oxygen reduction reaction, J. Mater. Chem. A 6(14) (2018) 5740-5745. [74] D.H. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts, Science 351(6271) (2016) 361-365. [75] R. Yu, R. Liu, J. Deng, M.F. Ran, N. Wang, W. Chu, Z.W. He, Z. Du, C.F. Jiang, W.J. Sun, Pd nanoparticles immobilized on carbon nanotubes with a polyaniline coaxial coating for the Heck reaction: Coating thickness as the key factor influencing the efficiency and stability of the catalyst, Catal. Sci. Technol. 8(5) (2018) 1423-1434. [76] M. Nosrati, D. Vieira, E.J. Harvey, G.E. Merle, S. Bhadra, Modified Clark microsensors with enhanced sensing current, IEEE Sens. J. 20(20) (2020) 12117-12126. [77] M. Osborne, A. Aryasomayajula, A. Shakeri, P.R. Selvaganapathy, T.F. Didar, Suppression of biofouling on a permeable membrane for dissolved oxygen sensing using a lubricant-infused coating, ACS Sens. 4(3) (2019) 687-693. [78] J. Luo, T. Dziubla, R. Eitel, A low temperature co-fired ceramic based microfluidic Clark-type oxygen sensor for real-time oxygen sensing, Sens. Actuat. B Chem. 240(2017) 392-397. [79] H.J. Lee, H.M. Kim, J.H. Park, S.K. Lee, Fabrication and characterization of micro dissolved oxygen sensor activated on demand using electrolysis, Sens. Actuat. B Chem. 241(2017) 923-930. [80] S.Q. Song, H. Zhang, Y.H. Wan, J.Q. Luo, 3D neighborhood nanostructure reinforces biosensing membrane, Adv. Funct. Mater. 33(41) (2023) 2303313. [81] S.E. Null, N.R. Mouzon, L.R. Elmore, Dissolved oxygen, stream temperature, and fish habitat response to environmental water purchases, J. Environ. Manage. 197(2017) 559-570. [82] F.B. Li, Z.P. Sun, H.Y. Qi, X.Y. Zhou, C.C. Xu, D.X. Wu, F.P. Fang, J.F. Feng, N. Zhang, Effects of rice-fish co-culture on oxygen consumption in intensive aquaculture pond, Rice Sci. 26(1) (2019) 50-59. [83] J.M. Sonawane, C.I. Ezugwu, P.C. Ghosh, Microbial fuel cell-based biological oxygen demand sensors for monitoring wastewater: State-of-the-art and practical applications, ACS Sens. 5(8) (2020) 2297-2316. [84] T. Yamashita, N. Ookawa, M. Ishida, H. Kanamori, H. Sasaki, Y. Katayose, H. Yokoyama, A novel open-type biosensor for the in situ monitoring of biochemical oxygen demand in an aerobic environment, Sci. Rep. 6(2016) 38552. [85] W.C. Duan, F.J. del Campo, M. Gich, C. Fernandez-Sanchez, In-field one-step measurement of dissolved chemical oxygen demand with an integrated screen-printed electrochemical sensor, Sens. Actuat. B Chem. 369(2022) 132304. [86] F. Garcia-Ochoa, E. Gomez, V.E. Santos, J.C. Merchuk, Oxygen uptake rate in microbial processes: An overview, Biochem. Eng. J. 49(3) (2010) 289-307. [87] G.M. Han, M.R. Webb, C. Richter, J. Parsons, A.L. Waterhouse, Yeast alter micro-oxygenation of wine: Oxygen consumption and aldehyde production, J. Sci. Food Agric. 97(11) (2017) 3847-3854. [88] Z.H. Bai, L.M. Harvey, B. McNeil, Oxidative stress in submerged cultures of fungi, Crit. Rev. Biotechnol. 23(4) (2003) 267-302. [89] S.W. Wang, K.Z. Gu, C.X. Yan, Z.Q. Guo, P. Zhao, W.H. Zhu, POSS: A morphology-tuning strategy to improve the sensitivity and responsiveness of dissolved oxygen sensor, Ind. Eng. Chem. Res. 58(19) (2019) 7761-7768. [90] D.F. Rolfe, G.C. Brown, Cellular energy utilization and molecular origin of standard metabolic rate in mammals, Physiol. Rev. 77(3) (1997) 731-758. [91] A. Carreau, B. El Hafny-Rahbi, A. Matejuk, C. Grillon, C. Kieda, Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia, J. Cell. Mol. Med. 15(6) (2011) 1239-1253. [92] V. Marassi, S. Giordani, A. Kurevija, E. Panetta, B. Roda, N. Zhang, A. Azzolini, S. Dolzani, D. Manko, P. Reschiglian, M. Atti, A. Zattoni, The challenges of O2 detection in biological fluids: Classical methods and translation to clinical applications, Int. J. Mol. Sci. 23(24) (2022) 15971. [93] Y. Mendelson, Pulse oximetry: Theory and applications for noninvasive monitoring, Clin. Chem. 38(9) (1992) 1601-1607. [94] E.D. Chan, M.M. Chan, M.M. Chan, Pulse oximetry: Understanding its basic principles facilitates appreciation of its limitations, Respir. Med. 107(6) (2013) 789-799. [95] A. Mason, O. Korostynska, J. Louis, L.E. Cordova-Lopez, B. Abdullah, J. Greene, R. Connell, J. Hopkins, Noninvasive In-situ measurement of blood lactate using microwave sensors, IEEE Trans. Biomed Eng. 65(3) (2018) 698-705. [96] H. Lyng, K. Sundfoer, E.K. Rofstad, Oxygen tension in human tumours measured with polarographic needle electrodes and its relationship to vascular density, necrosis and hypoxia, Radiother. Oncol. 44(2) (1997) 163-169. [97] M. Nozue, I. Lee, F. Yuan, B.A. Teicher, D.M. Brizel, M.W. Dewhirst, C.G. Milross, L. Milas, C.W. Song, C.D. Thomas, M. Guichard, S.M. Evans, C.J. Koch, E.M. Lord, R.K. Jain, H.D. Suit, Interlaboratory variation in oxygen tension measurement by Eppendorf Histograph and comparison with hypoxic marker, J. Surg. Oncol. 66(1) (1997) 30-38. [98] L. Zhou, H.F. Hou, H. Wei, L.N. Yao, L. Sun, P. Yu, B. Su, L.Q. Mao, In vivo monitoring of oxygen in rat brain by carbon fiber microelectrode modified with antifouling nanoporous membrane, Anal. Chem. 91(5) (2019) 3645-3651. |
[1] | Zhihao Yang, Li Chen, Jian Xue, Miaomiao Su, Fangdan Zhang, Liangxin Ding, Suqing Wang, Haihui Wang. Nano-alumina@cellulose-coated separators with the reinforced-concrete-like structure for high-safety lithium-ion batteries[J]. 中国化学工程学报, 2024, 68(4): 83-93. |
[2] | Kexin Zhang, Wenmin Zhang, Heng An, Zhe Huang, Yanzhen Wen, Xiangyu Jiao, Yongqiang Wen. Porous nanofibrous dressing enables mesenchymal stem cell spheroid formation and delivery to promote diabetic wound healing[J]. 中国化学工程学报, 2024, 68(4): 156-164. |
[3] | Li Wang, Ji-Xiang Guo, Rui-Ying Xiong, Chen-Hao Gao, Xiao-Jun Zhang, Dan Luo. In situ modification of heavy oil catalyzed by nanosized metal-organic framework at mild temperature and its mechanism[J]. 中国化学工程学报, 2024, 67(3): 166-173. |
[4] | Wensheng Li, Liangyuan Qi, Daolin Ye, Wei Cai, Weiyi Xing. Facile modification of aluminum hypophosphate and its flame retardancy for polystyrene[J]. 中国化学工程学报, 2023, 60(8): 90-98. |
[5] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions[J]. 中国化学工程学报, 2023, 60(8): 108-117. |
[6] | Sufei Wang, Mengjie Hao, Danyang Xiao, Tianmiao Zhang, Hua Li, Zhongshan Chen. Synthesis of porous carbon nanomaterials and their application in tetracycline removal from aqueous solutions[J]. 中国化学工程学报, 2023, 59(7): 200-209. |
[7] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater[J]. 中国化学工程学报, 2023, 58(6): 124-136. |
[8] | Aneela Sabir, Wail Falath, Muhammad Shafiq, Nafisa Gull, Maria Wasim, Karl I. Jacob. Effective desalination and anti-biofouling performance via surface immobilized MWCNTs on RO membrane[J]. 中国化学工程学报, 2023, 56(4): 33-45. |
[9] | Haonan Yu, Xiaofeng Yang, Hongbin Yang, Jinming Xu, Yanqiang Huang. Phosphorus and nitrogen co-doped graphene for catalytic dehydrochlorination of 1,2-dichloroethane[J]. 中国化学工程学报, 2023, 64(12): 149-155. |
[10] | Yi Wu, Hongzhou Shang, Shisheng Lai, Yali Di, Xiaoran Sun, Ning Qiao, Lihua Han, Zheng Zhao, Yujin Lu. Preparation and evaluation of controllable drug delivery system: A light responsive nanosphere based on β-cyclodextrin/mesoporous silica[J]. 中国化学工程学报, 2023, 62(10): 159-167. |
[11] | Xinhai Zhou, Dawei Zhou, Xinhui Bao, Yang Zhang, Jie Zhou, Fengxue Xin, Wenming Zhang, Xiujuan Qian, Weiliang Dong, Min Jiang, Katrin Ochsenreither. Production of palmitoleic acid by oleaginous yeast Scheffersomyces segobiensis DSM 27193 using systematic dissolved oxygen regulation strategy[J]. 中国化学工程学报, 2023, 53(1): 324-331. |
[12] | Fu Yang, Ruyi Wang, Shijian Zhou, Xuyu Wang, Yan Kong, Shuying Gao. Mesopore-encaged V-Mn oxides: Progressive insertion approach triggering reconstructed active sites to enhance catalytic oxidative desulfuration[J]. 中国化学工程学报, 2022, 45(5): 182-193. |
[13] | Mingxia Tian, Aili Wang, Hengbo Yin. Evolution of copper nanowires through coalescing of copper nanoparticles induced by aliphatic amines and their electrical conductivities in polyester films[J]. 中国化学工程学报, 2022, 44(4): 284-291. |
[14] | Qi Liu, Gao Cheng, Ming Sun, Weixiong Yu, Xiaohong, Zeng, Shichang Tang, Yongfeng li, Lin Yu. A facile preparation of hausmannite as a high-performance catalyst for toluene combustion[J]. 中国化学工程学报, 2022, 44(4): 392-401. |
[15] | Xiangzhao Hu, Junjie Sun, Wanzhen Zheng, Sixing Zheng, Yu Xie, Xiang Gao, Bin Yang, Zhongjian Li, Lecheng Lei, Yang Hou. Layered bismuth oxide/bismuth sulfide supported on carrageenan derived carbon for efficient carbon dioxide electroreduction to formate[J]. 中国化学工程学报, 2022, 43(3): 116-123. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||