[1] L.Y. Sun, J. Li, Q.S. Li, Progress in technology of dividing wall column, Mod. Chem. Ind. 28(9) (2008) 38-41, 43. [2] W.Y. Jin, F. Zhang, B.B. Chen, Z.M. Fang, Flooding hydraulics characteristic in column with metal gauze corrugated packing, CIESC J. 63(10) (2012) 3125-3130. [3] Z.X. Zhang, G.Y. Wang, Z.H. Yang, X. Yu, H.H. Wang, B.J. Gao, H.T. Zheng, S.L. Zhang, C.L. Li, Acoustic signal-based method for recognizing fluid flow states in distillation columns, Ind. Eng. Chem. Res. 61(48) (2022) 17582-17592. [4] M.S.A. King, I.G. Foulds, Sensing system for direct monitoring of small batch alcohol distillation, 2019 IEEE SENSORS. October 27-30, 2019, Montreal, QC, Canada. IEEE, (2019) 1-3. [5] G. Haushofer, M. Schlager, V. Wolf-Zollner, M. Lehner, Automated detection of loading and flooding points in packed columns, Chem. Eng. Res. Des. 196(2023) 61-70. [6] K. El Korchi, R. Alami, S. Mimount, A. Saadaoui, A. Chaouch, Coking phenomenon detection in liquid flow through a solid phase in a lab-scale distillation column using radioisotope techniques, Measurement 110(2017) 339-343. [7] S.G. Nnabuife, K.E.S. Pilario, L.Y. Lao, Y. Cao, M. Shafiee, Identification of gas-liquid flow regimes using a non-intrusive Doppler ultrasonic sensor and virtual flow regime maps, Flow Meas. Instrum. 68(2019) 101568. [8] L. Zhang, Y. Xing, D.Z. Wu, N. Chu, Passive acoustic identification of bubble flow regime based on synchrosqueezing wavelet transform and deep learning, AlChE. J. 67(6) (2021) e17200. [9] H.H. Yang, J.H. Li, M.P. Sheng, Underwater acoustic target multi-attribute correlation perception method based on deep learning, Appl. Acoust. 190(2022) 108644. [10] A. Qurthobi, R. Maskeliunas, R. Damasevicius, Detection of mechanical failures in industrial machines using overlapping acoustic anomalies: a systematic literature review, Sensors 22(10) (2022) 3888. [11] P. Zhang, Y. Yang, J.Y. Sun, Z.L. Huang, J.D. Wang, Y.R. Yang, Acoustic analysis of particle dispersion state and prediction of solid concentration in horizontal hydraulic conveying, Chem. Eng. Sci. 245(2021) 116973. [12] X.B. Rui, J.W. Liu, Y.B. Li, L. Qi, G.F. Li, Research on fault diagnosis and state assessment of vacuum pump based on acoustic emission sensors, Rev. Sci. Instrum. 91(2) (2020) 025107. [13] G. Mousmoulis, N. Karlsen-Davies, G. Aggidis, I. Anagnostopoulos, D. Papantonis, Experimental analysis of cavitation in a centrifugal pump using acoustic emission, vibration measurements and flow visualization, Eur. J. Mech. Fluids. 75(2019) 300-311. [14] L.F. Shi, W. Xu, X.N. Ma, X. Wang, H. Tian, G.Q. Shu, Thermal and acoustic performance of silencing heat exchanger for engine waste heat recovery, Appl. Therm. Eng. 201(2022) 117711. [15] F. Czwielong, V. Hruska, M. Bednarik, S. Becker, On the acoustic effects of sonic crystals in heat exchanger arrangements, Appl. Acoust. 182(2021) 108253. [16] F. Zenger, G. Herold, S. Becker, Acoustic Characterization of Forward- and Backward-Skewed Axial Fans under Increased Inflow Turbulence 22nd AIAA/CEAS Aeroacoustics Conference. Lyon, France. Reston, Virginia: AIAA, (2016): AIAA2016-2943. [17] H. Fan, S. Tariq, T. Zayed, Acoustic leak detection approaches for water pipelines, Autom. ConStruct. 138(2022) 104226. [18] K. Wang, Y.N. Hu, M. Qin, G. Liu, Y.C. Li, G. Wang, A leakage particle-wall impingement based vibro-acoustic characterization of the leaked sand-gas pipe flow, Particuology 55(2021) 84-93. [19] G. Bernasconi, G. Giunta, Acoustic detection and tracking of a pipeline inspection gauge, J. Petrol. Sci. Eng. 194(2020) 107549. [20] S.B. Zhu, Z.L. Li, S.M. Zhang, L.L. Liang, H.F. Zhang, Natural gas pipeline valve leakage rate estimation via factor and cluster analysis of acoustic emissions, Measurement 125(2018) 48-55. [21] S.A. Taqvi, L.D. Tufa, H. Zabiri, A.S. Maulud, F. Uddin, Multiple fault diagnosis in distillation column using multikernel support vector machine, Ind. Eng. Chem. Res. 57(43) (2018) 14689-14706. [22] Y. Huang, Y.H. Quan, T. Liu, Supervised sparse coding with decision forest, IEEE Signal Process. Lett. 26(2) (2019) 327-331. [23] A. Butter, T. Finke, F. Keil, M. Kramer, S. Manconi, Classification of Fermi-LAT blazars with Bayesian neural networks, J. Cosmol. Astropart. Phys. 2022(4) (2022) 23. [24] W.C. Xing, Y.L. Bei, Medical health big data classification based on KNN classification algorithm, IEEE Access 8(2019) 28808-28819. [25] N. Wang, F. Yang, R.D. Zhang, F.R. Gao, Intelligent fault diagnosis for chemical processes using deep learning multimodel fusion, IEEE Trans. Cybern. 52(7) (2022) 7121-7135. [26] P. Jiang, Z.X. Hu, J. Liu, S.N. Yu, F. Wu, Fault diagnosis based on chemical sensor data with an active deep neural network, Sensors 16(10) (2016) 1695. [27] W.F. Xiao, L.Y. Yu, Non-contact passive sensing of acoustic emission signal using the air-coupled transducer In:Conference on Health Monitoring of Structural and Biological Systems XV. USA. SPIEL, 2021. [28] S.W. Xiong, L. Zhou, Y.Y. Dai, X. Ji, Attention-based long short-term memory fully convolutional network for chemical process fault diagnosis, Chin. J. Chem. Eng. 56(2023) 1-14. [29] C.T. Wang, H.B. Shi, B. Song, Y. Tao, Hierarchical multihead self-attention for time-series-based fault diagnosis, Chin. J. Chem. Eng. 70(2024) 104-117. [30] C. Yang, C. Jiang, G. Yu, J. Li, C.M. Bo, Transferable adversarial slow feature extraction network for few-shot quality prediction in coal-to-ethylene glycol process, Chin. J. Chem. Eng. 71(2024) 258-271. [31] H.H. Chen, J. Cen, Z.H. Yang, W.W. Si, H.C. Cheng, Fault diagnosis of the dynamic chemical process based on the optimized CNN-LSTM network, ACS Omega 7(38) (2022) 34389-34400. [32] B.L. Shao, X.L. Hu, G.Q. Bian, Y. Zhao, A multichannel LSTM-CNN method for fault diagnosis of chemical process, Math. Probl Eng. 2019(1) (2019) 1032480.1-1032480.14. [33] T. Huang, Q. Zhang, X.A. Tang, S.Y. Zhao, X.N. Lu, A novel fault diagnosis method based on CNN and LSTM and its application in fault diagnosis for complex systems, Artif. Intell. Rev. 55(2) (2022) 1289-1315. [34] J. Oeing, L.M. Neuendorf, L. Bittorf, W. Krieger, N. Kockmann, Flooding prevention in distillation and extraction columns with aid of machine learning approaches, Chem. Ing. Tech. 93(12) (2021) 1917-1929. [35] X.L. Ge, B.B. Wang, X.C. Yang, Y. Pan, B.T. Liu, B.T. Liu, Fault detection and diagnosis for reactive distillation based on convolutional neural network, Comput. Chem. Eng. 145(2021) 107172. [36] B.Q. Li, Y.Y. He, An improved ResNet based on the adjustable shortcut connections, IEEE Access 6(2018) 18967-18974. [37] S. Mian Qaisar, Isolated speech recognition and its transformation in visual signs, J. Electr. Eng. Technol. 14(2) (2019) 955-964. [38] X. Zhang, A.B. Chen, G.X. Zhou, Z.Q. Zhang, X.B. Huang, X.H. Qiang, Spectrogram-frame linear network and continuous frame sequence for bird sound classification, Ecol. Inf. 54(2019) 101009. [39] Z.S. Bojkovic, B.M. Bakmaz, M.R. Bakmaz, Hamming window to the digital world, Proc. IEEE 105(6) (2017) 1185-1190. [40] J.T. Liu, W. Wang, N. Chu, D.Z. Wu, W.W. Xu, Numerical simulations and experimental validation on passive acoustic emissions during bubble formation, Appl. Acoust. 130(2018) 34-42. [41] Q.L. Ma, Z. Zou, Traffic state evaluation using traffic noise, IEEE Access 8(2020) 120627-120646. [42] M. Shafiq, Z.Q. Gu, Deep residual learning for image recognition: a survey. Appl. Sci. 12(18) (2022) 8972. |