[1] L. Chen, G. Msigwa, M.Y. Yang, A.I. Osman, S. Fawzy, D.W. Rooney, P.S. Yap, Strategies to achieve a carbon neutral society: a review, Environ. Chem. Lett. 20 (4) (2022) 2277-2310. [2] S. Basbug, G. Papadakis, J.C. Vassilicos, Reduced power consumption in stirred vessels by means of fractal impellers, AIChE J. 64 (4) (2018) 1485-1499. [3] J. Gan, H.Z. Liu, Y.P. Wei, J.J. Chen, X.Y. Li, Z. Jiang, G.L. Li, H. Li, K.Q. Chen, Bubble diameter, mass transfer, and bioreaction of dynamic membrane-stirred reactors, Ind. Eng. Chem. Res. 63 (4) (2024) 1760-1772. [4] R. Marx, H.L. Liu, S. Yoon, D.M. Xie, CFD evaluation of hydrophobic feedstock bench-scale fermenters for efficient high agitation volumetric mass transfer, Biotechnol. J. 19 (2) (2024) e2300384. [5] G.S. Berestinas, J.R. Nunhez, Experimental and computational investigation of coaxial contra-rotating impellers design in baffled-free stirred reactors, Can. J. Chem. Eng. 102 (2024) 2663-2681. [6] S.C. Fu, T.Y. Zhao, L.L. Tao, G.F. Chen, D. Yang, L. Tao, Influence of glass-lined V-shaped stirrers on crystallization properties, Kor. J. Chem. Eng. 41 (6) (2024) 1625-1636. [7] S. Cayirli, H.S. Gokcen, N. Yuce, The impact of different stirrer designs and mill orientations on the grinding efficiency, Powder Technol. 438 (2024) 119577. [8] Q.Y. An, J.T. Li, L. Zhang, N.L. Wang, P.F. Zhang, Z.H. Luo, C.X. Lu, Study on flow characteristics and phase holdup in a slurry bubble column coupled with mild agitation, Particuology 91 (2024) 226-234. [9] D. Maynes, M. Butcher, Steady-state and decay dynamics for impellers of varying aspect ratio in unbaffled tanks, AIChE J. 48 (1) (2002) 38-49. [10] K. Steiros, P.J.K. Bruce, O.R.H. Buxton, J.C. Vassilicos, Power consumption and form drag of regular and fractal-shaped turbines in a stirred tank, AIChE J. 63 (2) (2017) 843-854. [11] F. Alberini, A. Albano, P. Singh, C. Christodoulou, G. Montante, F. Maluta, A. Paglianti, Fluid dynamics and power consumptions in a single use stirred tank adopted in the pharmaceutical industry, Chem. Eng. Res. Des. 204 (2024) 159-171. [12] T. Kracik, T. Moucha, Ungassed power input prediction in stirred tank reactors, Chem. Pap. 76 (1) (2022) 293-300. [13] J. Fitschen, M. Maly, A. Rosseburg, J. Wutz, T. Wucherpfennig, M. Schluter, Influence of spacing of multiple impellers on power input in an industrial-scale aerated stirred tank reactor, Chem. Ing. Tech. 91 (12) (2019) 1794-1801. [14] J.J. Zhang, D.F. Wang, Z.M. Gao, Y.T. Cai, Z.Q. Cai, Y.Y. Bao, Power consumption and gas-liquid mass transfer in a hot-sparged three-phase stirred reactor, Powder Technol. 354 (2019) 314-323. [15] M. Christwardana, G.R. Harvianto, K. Sunandar, W.D. Novian, R. Ramanto, Effect of H/D ratio and impeller type on power consumption of agitator in continuous stirred tank reactor for nitrocellulose production from cotton linter and nitric acid, Int. J. Chem. React. Eng. 18 (12) (2020) 20200109. [16] P. T R, T.A. Alahmadi, S.H. Salmen, T.N. Verma, K.K. Gupta, B. Gavurova, M. Sekar, Impact of sludge density and viscosity on continuous stirred tank reactor performance in wastewater treatment by numerical modelling, J. Taiwan Inst. Chem. Eng. (2024) 105368. [17] A.Q. Li, Y. Yao, X.Y. Tang, P.Q. Liu, Q. Zhang, Q. Li, P. Li, F. Zhang, Y.D. Wang, C.Y. Tao, Z.H. Liu, Experimental and computational investigation of chaotic advection mixing in laminar rectangular stirred tanks, Chem. Eng. J. 485 (2024) 149956. [18] Y. Sui, W.C. Jiang, D.H. Zhang, H.B. Meng, Y.F. Zhao, Effect of off-bottom clearance of Lightnin impeller on heat transfer performance in the stirred tank coupled with draft tube, Int. J. Heat Mass Tran. 225 (2024) 125401. [19] T. Meng, Y. Wang, S.S. Wang, S. Qin, Q. Zhang, Y.D. Wang, C.Y. Tao, Y.Q. Xu, Z.H. Liu, Exploration of multishafts stirred reactors: an investigation on experiments and large eddy simulations for turbulent chaos and mixing characteristics, Ind. Eng. Chem. Res. 63 (5) (2024) 2441-2456. [20] M. Wu, N. Jurtz, L. Hohl, M. Kraume, Multi-objective geometrical optimization of single and dual impeller stirred tanks: an application of the mean age theory approach, Chem. Eng. Res. Des. 203 (2024) 709-720. [21] S. Basbug, G. Papadakis, J.C. Vassilicos, DNS investigation of the dynamical behaviour of trailing vortices in unbaffled stirred vessels at transitional Reynolds numbers, Phys. Fluids 29 (6) (2017) 064101. [22] J.J.J. Gillissen, H.E.A. Van den Akker, Direct numerical simulation of the turbulent flow in a baffled tank driven by a Rushton turbine, AIChE J. 58 (12) (2012) 3878-3890. [23] Z.P. Li, Y.Y. Bao, Z.M. Gao, PIV experiments and large eddy simulations of single-loop flow fields in Rushton turbine stirred tanks, Chem. Eng. Sci. 66 (6) (2011) 1219-1231. [24] V. Papkov, N. Shadymov, D. Pashchenko, Gas flow through a packed bed with low tube-to-particle diameter ratio: effect of pellet roughness, Phys. Fluids 36 (2) (2024) 027127. [25] D. Pashchenko, Flow dynamic in a packed bed filled with Ni-Al2O3 porous catalyst: experimental and numerical approach, AlChE. J. 65 (5) (2019) e16558. [26] A.E. Sommer, H. Rox, P. Shi, K. Eckert, R. Rzehak, Solid-liquid flow in stirred tanks: “CFD-grade” experimental investigation, Chem. Eng. Sci. 245 (2021) 116743. [27] E. Rajasekaran, B. Kumar, R. Muruganandhan, S.V. Raman, G.N. Devi, CFD simulation of convective heat transfer in vessel with mechanical agitation for milk, J. Food Sci. Technol. 57 (10) (2020) 3667-3676. [28] Z. Li, J. Chang, C. Yang, J.Z. Qu, Y.X. Yu, S.X. Xiong, Experiments and CFD simulation of accessories used in stirred pulp-mixing process, Chem. Eng. Process. Process. Intensif. 166 (2021) 108463. [29] M. Wu, N. Jurtz, A. Walle, M. Kraume, Evaluation and application of efficient CFD-based methods for the multi-objective optimization of stirred tanks, Chem. Eng. Sci. 263 (2022) 118109. [30] A.S. Sen, R. Rao, N. Basak, CFD modelling of hydrodynamics and temperature distribution during photo fermentative biohydrogen generation from cheese whey effluent in cylindrical bioreactor, Int. J. Hydrogen Energy 60 (2024) 740-755. [31] H. Ameur, Energy efficiency of different impellers in stirred tank reactors, Energy 93 (2015) 1980-1988. [32] X. Fang, Y.H. Yan, X.J. Li, F.J. He, J.Y. Tu, Characterisation and analysis on the agitation of downward pitched blade turbine in the Stirred Tank Reactor, Chem. Eng. J. 472 (2023) 144556. [33] C. Lv, H.W. Zhang, T. Yang, H.L. Zhao, Z.X. Ji, Effect of blade tilt angle on fluid flow characteristics in spray-blowing agitation composite process: a simulation, J. Iron Steel Res. Int. 31 (9) (2024) 2142-2155. [34] S.Q. Zhou, Q.Z. Yang, L.F. Lu, D. Xia, W.T. Zhang, H. Yan, CFD analysis of sine baffles on flow mixing and power consumption in stirred tank, Appl. Sci. 12 (11) (2022) 5743. [35] M. Chachi, Y. Kamla, M.T. Alhaffar, M. Bouzit, M.H. Meliani, F.A. Al-Badour, M.M. Rahman, R.K. Suleiman, Quantitative assessment of agitator performance in an anchor-stirred tank: investigating the impact of geometry, eccentricity, and rheological characteristics, Arabian J. Sci. Eng. 49 (10) (2024) 13885-13895. [36] A.D. Charalambidou, T.A. Wyrobnik, M. Micheletti, A. Ducci, Investigation of the impact of probes and internals on power and flow in stirred tank reactors, Chem. Eng. Sci. 286 (2024) 119683. [37] D. Wulandani, Z.A. Ibrahim, Design and performance test of biodiesel reactor using hellical screw agitator and baffles, IOP Conf. Ser. Earth Environ. Sci. 1038 (1) (2022) 012024. [38] L.Y. Zhao, P. Li, F.X. Liu, Structural design of spiral blade of concrete mixer truck, J. Phys. Conf. Ser. 1820 (1) (2021) 012041. [39] G.D. Zhang, X.Y. Shi, F. Wang, Methane hydrate production using a novel spiral-agitated reactor: promotion of hydrate formation kinetics, AIChE J. 68 (1) (2022) e17423. [40] M. Heydari, H. Sadat-Hosseini, Analysis of propeller wake field and vortical structures using k-ω SST method, Ocean. Eng. 204 (2020) 107247. [41] K.W. Pang, X.B. Huang, K. Yu, B.Y. Qiu, Q. Guo, Critical state calculation of saddle-shaped unstable region of the axial-flow pump based on bifurcation SST k-ω model, J. Mar. Sci. Eng. 11 (8) (2023) 1549. [42] B. Devolder, P. Rauwoens, P. Troch, Application of a buoyancy-modified k-ω SST turbulence model to simulate wave run-up around a monopile subjected to regular waves using OpenFOAM®, Coast. Eng. 125 (2017) 81-94. [43] L. Konozsy, The k-ω shear-stress transport (SST) turbulence model, in: A New Hypothesis on the Anisotropic Reynolds Stress Tensor for Turbulent Flows, Springer International Publishing, New York, 2019, pp. 7-66. [44] Y. Wang, W.L. Ren, G. Liu, J. Liu, J. Xu, Z.R. Hao, The pressure pulsation and spectrum analysis of ducted propeller based on SST k-ω model, J. Phys.: Conf. Ser. 1300 (1) (2019) 012080. [45] Y. Wang, W.L. Ren, G. Liu, Y.M. Zhang, Z.R. Hao, The numerical analysis of hydrodynamic characteristics of ducted propeller by using SST k-ω model, IOP Conf. Ser. Mater. Sci. Eng. 649 (1) (2019) 012025. [46] S.S. Hoseini, G. Najafi, B. Ghobadian, A.H. Akbarzadeh, Impeller shape-optimization of stirred-tank reactor: CFD and fluid structure interaction analyses, Chem. Eng. J. 413 (2021) 127497. [47] C.L. Guo, S. Xue, W. Li, H.Y. Qin, J.H. Guo, J.L. Zhang, Investigation of power characteristics in a novel cup-shaped-blade mixer, Chem. Eng. Process. Process. Intensif. 125 (2018) 150-162. [48] P. Chassaing, Fundamentals of Fluid Mechanics, Springer, Cham, 2022. [49] G.C. Wang, W.F. Cai, L. Xie, X.B. Zhang, Y. Wang, CFD modeling and simulation of the hydrodynamics characteristics of packed column with structured sinusoidal corrugated sheets packings, Chem. Eng. Res. Des. 183 (2022) 56-66. |