[1] A.K. Jena, A. Kulkarni, T. Miyasaka, Halide perovskite photovoltaics: background, status, and future prospects, Chem. Rev. 119 (5) (2019) 3036-3103. [2] H. Chen, C. Liu, J. Xu, A. Maxwell, W. Zhou, Y. Yang, Q.L. Zhou, A.S.R. Bati, H.Y. Wan, Z.W. Wang, L.W. Zeng, J.K. Wang, P. Serles, Y. Liu, S. Teale, Y.J. Liu, M.I. Saidaminov, M.Z. Li, N. Rolston, S. Hoogland, T. Filleter, M.G. Kanatzidis, B. Chen, Z.J. Ning, E.H. Sargent, Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands, Science 384 (6692) (2024) 189-193. [3] B. Li, D. Gao, S.A. Sheppard, W.D.J. Tremlett, Q. Liu, Z. Li, A.J.P. White, R.K. Brown, X. Sun, J. Gong, S. Li, S. Zhang, X. Wu, D. Zhao, C. Zhang, Y. Wang, X.C. Zeng, Z. Zhu, N.J. Long, Highly efficient and scalable p-i-n perovskite solar cells enabled by poly-metallocene interfaces, J. Am. Chem. Soc. 146 (19) (2024) 13391-13398. [4] W.R. Wang, J.X. Zhang, H.S. Guo, Z.X. Pan, H.S. Rao, G.Z. Zhang, X.H. Zhong, Limitations and progresses in carbon-based cesium lead halide perovskite solar cells, ChemSusChem 17 (11) (2024) e202301761. [5] C. Dong, B.J. Xu, D.M. Liu, E.G. Moloney, F.R. Tan, G.T. Yue, R. Liu, D.Y. Zhang, W.F. Zhang, M.I. Saidaminov, Carbon-based all-inorganic perovskite solar cells: Progress, challenges and strategies toward 20% efficiency, Mater. Today 50 (2021) 239-258. [6] H.N. Chen, S.H. Yang, Methods and strategies for achieving high-performance carbon-based perovskite solar cells without hole transport materials, J. Mater. Chem. A 7 (26) (2019) 15476-15490. [7] A.M. Elseman, C.Y. Xu, Y. Yao, M. Elisabeth, L.B. Niu, L. Malavasi, Q.L. Song, Electron transport materials: evolution and case study for high-efficiency perovskite solar cells, Sol. RRL 4 (7) (2020) 2000136. [8] Y. Zhou, X. Li, H. Lin, To be higher and stronger: metal oxide electron transport materials for perovskite solar cells, Small 16 (15) (2020) 1902579. [9] Y. Bai, I. Mora-Sero, F. De Angelis, J. Bisquert, P. Wang, Titanium dioxide nanomaterials for photovoltaic applications, Chem. Rev. 114 (19) (2014) 10095-10130. [10] Y. Wang, M. I. Dar, L. K. Ono, T. Zhang, M. Kan, Y. Li, L. Zhang, X. Wang, Y. Yang, X. Gao, Y. Qi, M. Gratzel, Y. Zhao, Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies >18%, Science 365 (2019) 591-595. [11] Y.Q. Cui, J.J. Shi, F.Q. Meng, B.C. Yu, S. Tan, S. He, C.Y. Tan, Y.M. Li, H.J. Wu, Y.H. Luo, D.M. Li, Q.B. Meng, A versatile molten-salt induction strategy to achieve efficient CsPbI3 perovskite solar cells with a high open-circuit voltage >1.2 V, Adv. Mater. 34 (45) (2022) e2205028. [12] S. Tan, B.C. Yu, Y.Q. Cui, F.Q. Meng, C.J. Huang, Y.M. Li, Z.J. Chen, H.J. Wu, J.J. Shi, Y.H. Luo, D.M. Li, Q.B. Meng, Temperature-reliable low-dimensional perovskites passivated black-phase CsPbI3 toward stable and efficient photovoltaics, Angew. Chem. Int. Ed 61 (23) (2022) e202201300. [13] S. Tan, C.Y. Tan, Y.Q. Cui, B.C. Yu, Y.M. Li, H.J. Wu, J.J. Shi, Y.H. Luo, D.M. Li, Q.B. Meng, Constructing an interfacial gradient heterostructure enables efficient CsPbI3 perovskite solar cells and printed minimodules, Adv. Mater. 35 (28) (2023) e2301879. [14] Y.W. Duan, J.G. Wang, D.F. Xu, P.G. Ji, H. Zhou, Y. Li, S.M. Yang, Z. Xie, X.H. Hai, X.R. Lei, R. Sun, Z.H. Fan, K. Zhang, S.Z. Liu, Z.K. Liu, 21.41%-efficiency CsPbI3 perovskite solar cells enabled by an effective redox strategy with 4-fluorobenzothiohydrazide in precursor solution, Adv. Funct. Mater. 34 (10) (2024) 2312638. [15] J.M. Qiu, X.Y. Mei, M.X. Zhang, G.L. Wang, S.W. Zou, L. Wen, J.M. Huang, Y. Hua, X.L. Zhang, Dipolar chemical bridge induced CsPbI3 perovskite solar cells with 21.86 % efficiency, Angew. Chem. Int. Ed 63 (18) (2024) e202401751. [16] J.X. Zhang, G.Z. Zhang, P.Y. Su, R. Huang, J.G. Lin, W.R. Wang, Z.X. Pan, H.S. Rao, X.H. Zhong, 1D choline-PbI3-based heterostructure boosts efficiency and stability of CsPbI3 perovskite solar cells, Angew. Chem. Int. Ed 62 (25) (2023) e202303486. [17] W.R. Wang, X. Peng, J.X. Zhang, J.G. Lin, R. Huang, G.Z. Zhang, H.S. Guo, Z.X. Pan, X.H. Zhong, H.S. Rao, Dimethylamine oxalate manipulating CsPbI3 perovskite film crystallization process for high efficiency carbon electrode based perovskite solar cells, J. Energy Chem. 93 (2024) 221-228. [18] Q.X. Zhang, H.C. Liu, X.Z. Wei, Y.F. Song, C.Y. Lv, W.P. Li, L.Q. Zhu, Y.S. Lan, Y.J. Du, K.X. Wang, P.G. Yin, C.Q. Lin, Z.D. Lin, Y. Bai, Q. Chen, S.H. Yang, H.N. Chen, Deploying a dipole electric field at the CsPbI3 perovskite/carbon interface for enhancing hole extraction and photovoltaic performance, Small 20 (40) (2024) 2402061. [19] J.G. Lin, R. Huang, X. Peng, J.X. Zhang, G.Z. Zhang, W.R. Wang, Z.X. Pan, H.S. Rao, X.H. Zhong, Eliminating hole extraction barrier in 1D/3D perovskite heterojunction for efficient and stable carbon-based CsPbI3 solar cells with a record efficiency, Adv. Mater. 36 (33) (2024) e2404561. [20] D.M. Hausmann, R.G. Gordon, Surface morphology and crystallinity control in the atomic layer deposition (ALD) of hafnium and zirconium oxide thin films, J. Cryst. Growth 249 (1-2) (2003) 251-261. [21] T.S. Sherkar, C. Momblona, L. Gil-Escrig, J. Avila, M. Sessolo, H.J. Bolink, L. Jan Anton Koster, Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions, ACS Energy Lett. 2 (5) (2017) 1214-1222. [22] W.B. Jiang, H. Loh, B.Q.L. Low, H.J. Zhu, J. Low, J.Z.X. Heng, K.Y. Tang, Z.B. Li, X.J. Loh, E.Y. Ye, Y.J. Xiong, Role of oxygen vacancy in metal oxides for photocatalytic CO2 reduction, Appl. Catal. B Environ. 321 (2023) 122079. [23] W.P. Hu, S.F. Yang, S.H. Yang, Surface modification of TiO2 for perovskite solar cells, Trends Chem. 2 (2) (2020) 148-162. [24] Z.L. Wang, R.J. Lin, Y.N. Huo, H.X. Li, L.Z. Wang, Formation, detection, and function of oxygen vacancy in metal oxides for solar energy conversion, Adv. Funct. Mater. 32 (7) (2022) 2109503. [25] E. Liu, B. Zhu, J. Luo, The Physics of Semiconductors, seventh ed., Publishing House of Electronic Industry, Beijing, 2017. [26] H. Zheng, C.H. Wang, X.T. Zhang, Y.Y. Li, H. Ma, Y.C. Liu, Control over energy level match in Keggin polyoxometallate-TiO2 microspheres for multielectron photocatalytic reactions, Appl. Catal. B Environ. 234 (2018) 79-89. [27] H.Y. Zhang, J.J. Shi, X. Xu, L.F. Zhu, Y.H. Luo, D.M. Li, Q.B. Meng, Mg-doped TiO2boosts the efficiency of planar perovskite solar cells to exceed 19%, J. Mater. Chem. A 4 (40) (2016) 15383-15389. [28] M.H. Lv, W. Lv, X. Fang, P. Sun, B.C. Lin, S. Zhang, X.Q. Xu, J.N. Ding, N.Y. Yuan, Performance enhancement of perovskite solar cells with a modified TiO2 electron transport layer using Zn-based additives, RSC Adv. 6 (41) (2016) 35044-35050. [29] T.T. Wu, C. Zhen, H.Z. Zhu, J.B. Wu, C.X. Jia, L.Z. Wang, G. Liu, N.G. Park, H.M. Cheng, Gradient Sn-doped heteroepitaxial film of faceted rutile TiO2 as an electron selective layer for efficient perovskite solar cells, ACS Appl. Mater. Interfaces 11 (21) (2019) 19638-19646. [30] H.P. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song, H.S. Duan, Z.R. Hong, J.B. You, Y.S. Liu, Y. Yang, Photovoltaics. Interface engineering of highly efficient perovskite solar cells, Science 345 (6196) (2014) 542-546. [31] B.X. Chen, H.S. Rao, W.G. Li, Y.F. Xu, H.Y. Chen, D.B. Kuang, C.Y. Su, Achieving high-performance planar perovskite solar cell with Nb-doped TiO2 compact layer by enhanced electron injection and efficient charge extraction, J. Mater. Chem. A 4 (15) (2016) 5647-5653. [32] J. Peng, F. Kremer, D. Walter, Y. Wu, Y. Ji, J. Xiang, W. Liu, T. Duong, H. Shen, T. Lu, F. Brink, D. Zhong, L. Li, O. Lee Cheong Lem, Y. Liu, K.J. Weber, T.P. White, K.R. Catchpole, Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent, Nature 601 (7894) (2022) 573-578. [33] D.S. Che Halin, A.W. Azhari, M.A.A. Mohd Salleh, N.I. Muhammad Nadzri, P. Vizureanu, M.M. Al Bakri Abdullah, J.A. Wahab, A.V. Sandu, Metal-doped TiO2 thin film as an electron transfer layer for perovskite solar cells: a review, Coatings 13 (1) (2023) 4. [34] B. Roose, S. Pathak, U. Steiner, Doping of TiO2 for sensitized solar cells, Chem. Soc. Rev. 44 (22) (2015) 8326-8349. [35] L. Liu, X.B. Chen, Titanium dioxide nanomaterials: self-structural modifications, Chem. Rev. 114 (19) (2014) 9890-9918. [36] W.R. Wang, Y. Lin, G.Z. Zhang, C.T. Kang, Z.X. Pan, X.H. Zhong, H.S. Rao, Modification of compact TiO2 layer by TiCl4-TiCl3 mixture treatment and construction of high-efficiency carbon-based CsPbI2Br perovskite solar cells, J. Energy Chem. 63 (2021) 442-451. [37] D. Bing Wang, D. Meng Zhang, D. Xun Cui, Z.W. Wang, M. Rager, P. Yingkui Yang, P. Zhigang Zou, P. Zhong Lin Wang, P. Zhiqun Lin, Unconventional route to oxygen-vacancy-enabled highly efficient electron extraction and transport in perovskite solar cells, Angew. Chem. Int. Ed. 59 (4) (2020) 1611-1618. [38] J.L. Liu, S. Li, Z.X. Qiu, Y. Liu, C. Qiu, W.H. Zhang, J.H. Qi, K. Chen, W. Wang, C.Y. Wang, Z.Z. Cui, Y.Q. Su, Y. Hu, A.Y. Mei, H.W. Han, Stratified oxygen vacancies enhance the performance of mesoporous TiO2 electron transport layer in printable perovskite solar cells, Small 19 (32) (2023) e2300737. [39] G.Z. Zhang, J.X. Zhang, Z.C. Yang, Z.X. Pan, H.S. Rao, X.H. Zhong, Role of moisture and oxygen in defect management and orderly oxidation boosting carbon-based CsPbI2 Br solar cells to a new record efficiency, Adv. Mater. 34 (40) (2022) e2206222. [40] Y.Y. Liao, J.X. Zhang, W.R. Wang, Z.C. Yang, R. Huang, J.G. Lin, L. Che, G.Y. Yang, Z.X. Pan, H.S. Rao, X.H. Zhong, Anti-dissociation passivation via bidentate anchoring for efficient carbon-based CsPbI2.6Br0.4 solar cells, Adv. Funct. Mater. 33 (20) (2023) 2214784. [41] H.L. Wang, Y.F. Song, Z.D. Lin, W.P. Li, H.C. Liu, X.Z. Wei, Q.X. Zhang, C.Y. Lv, L.Q. Zhu, K.X. Wang, Y.S. Lan, L. Wang, C.Q. Lin, P.G. Yin, T.L. Song, Y. Bai, Q. Chen, S.H. Yang, H.N. Chen, In situ growth of a robust 1D capping layer for stable and efficient CsPbI3 perovskite solar cells without hole transporter, Adv. Energy Mater. 14 (16) (2024) 2304038. [42] J. Wang, Y. Che, Y. Duan, Z. Liu, S. Yang, D. Xu, Z. Fang, X. Lei, Y. Li, S.F. Liu, 21.15%-efficiency and stable γ-CsPbI3 perovskite solar cells enabled by an acyloin ligand, Adv. Mater. 35 (12) (2023) e2210223. [43] Y.Q. Li, X.Y. Lu, Y.T. Mei, C. Dong, D.T. Gangadharan, K. Liu, Z.J. Wang, S.C. Qu, M.I. Saidaminov, W.F. Zhang, F.R. Tan, Blade-coated carbon electrode perovskite solar cells to exceed 20% efficiency through protective buffer layers, Adv. Funct. Mater. 33 (34) (2023) 2301920. [44] X.B. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev. 107 (7) (2007) 2891-2959. [45] M. Cargnello, T.R. Gordon, C.B. Murray, Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals, Chem. Rev. 114 (19) (2014) 9319-9345. [46] L. Kavan, L. Steier, M. Gratzel, Ultrathin buffer layers of SnO2 by atomic layer deposition: perfect blocking function and thermal stability, J. Phys. Chem. C 121 (1) (2017) 342-350. [47] Y.H. Li, H.B. Xie, E.L. Lim, A. Hagfeldt, D.Q. Bi, Recent progress of critical interface engineering for highly efficient and stable perovskite solar cells, Adv. Energy Mater. 12 (5) (2022) 2102730. [48] D.W. DeQuilettes, J.J. Yoo, R. Brenes, F.U. Kosasih, M. Laitz, B.D. Dou, D.J. Graham, K. Ho, Y.W. Shi, S.S. Shin, C. Ducati, M.G. Bawendi, V. Bulovic, Reduced recombination via tunable surface fields in perovskite thin films, Nat. Energy 9 (2024) 457-466. [49] H. Liu, H.T. Ma, X.Z. Li, W.Z. Li, M. Wu, X.H. Bao, The enhancement of TiO2 photocatalytic activity by hydrogen thermal treatment, Chemosphere 50 (1) (2003) 39-46. [50] K. Komaguchi, T. Maruoka, H. Nakano, I. Imae, Y. Ooyama, Y. Harima, Electron-transfer reaction of oxygen species on TiO2Nanoparticles induced by sub-band-gap illumination, J. Phys. Chem. C 114 (2) (2010) 1240-1245. [51] M.T. Greiner, L. Chai, M.G. Helander, W.M. Tang, Z.H. Lu, Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies, Adv. Funct. Mater. 22 (21) (2012) 4557-4568. [52] Z.J. Wu, Y. Wang, L.C. Li, R.K. Zhang, J. Hong, R. Huang, L. Che, G.Y. Yang, H.S. Rao, Z.X. Pan, X.H. Zhong, Improving the electron transport performance of TiO2 film by regulating TiCl4 post-treatment for high-efficiency carbon-based perovskite solar cells, Small 19 (29) (2023) e2300690. [53] A.K. Kyaw, D.H. Wang, V. Gupta, W.L. Leong, L. Ke, G.C. Bazan, A.J. Heeger, Intensity dependence of current-voltage characteristics and recombination in high-efficiency solution-processed small-molecule solar cells, ACS Nano 7 (5) (2013) 4569-4577. [54] Z. Yao, Z. Xu, W.G. Zhao, J.R. Zhang, H. Bian, Y.K. Fang, Y. Yang, S.Z. Liu, Enhanced efficiency of inorganic CsPbI3-xBrx perovskite solar cell via self-regulation of antisite defects Adv. Energy Mater. 11 (23) (2021) 2100403. [55] Z.W. Gao, Y. Wang, W.C.H. Choy, Buried interface modification in perovskite solar cells: a materials perspective, Adv. Energy Mater. 12 (20) (2022) 2104030. |