[1] V. Jain, S. Tyagi, P. Roy, P.P. Pillai, Ammonia synthesis with visible light and quantum dots, J. Am. Chem. Soc. 146 (47) (2024) 32356-32365. [2] Q.K. Hu, O.W. Peng, J. Liu, D.R. Chen, K.P. Loh, Low power consumption ammonia electrosynthesis using hydrogen-nitrate flow electrolyzer, ACS Energy Lett. 9 (5) (2024) 2303-2309. [3] X. Fu, J.B. Pedersen, Y. Zhou, M. Saccoccio, S. Li, R. Sazinas, K. Li, S.Z. Andersen, A. Xu, N.H. Deissler, J.B.V. Mygind, C. Wei, J. Kibsgaard, P.C.K. Vesborg, J.K. Noerskov, I. Chorkendorff, Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation, Science 379 (6633) (2023) 707-712. [4] K.E. Lamb, M.D. Dolan, D.F. Kennedy, Ammonia for hydrogen storage; A review of catalytic ammonia decomposition and hydrogen separation and purification, Int. J. Hydrog. Energy 44 (7) (2019) 3580-3593. [5] S.L. Foster, S.I.P. Bakovic, R.D. Duda, S. Maheshwari, R.D. Milton, S.D. Minteer, M.J. Janik, J.N. Renner, L.F. Greenlee, Catalysts for nitrogen reduction to ammonia, Nat. Catal. 1 (7) (2018) 490-500. [6] Y.C. Wan, J.C. Xu, R.T. Lv, Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions, Mater. Today 27 (2019) 69-90. [7] S. Padinjarekutt, H.Z. Li, S.J. Ren, P. Ramesh, F.L. Zhou, S.G. Li, G. Belfort, M. Yu, Na+-gated nanochannel membrane for highly selective ammonia (NH3) separation in the Haber-Bosch process, Chem. Eng. J. 454 (2023) 139998. [8] J. Emsley, Going one better than nature? Nature 410 (6829) (2001) 633-634. [9] S. Samaroo, D.P. Hickey, Electrochemical ammonia production from nitrates in agricultural tile drainage: Technoeconomic and global warming analysis, AlChE. J. 69 (2) (2023) e17969. [10] K. Dong, Y.C. Yao, H.B. Li, H. Li, S.J. Sun, X. He, Y. Wang, Y.S. Luo, D.D. Zheng, Q. Liu, Q. Li, D.W. Ma, X.P. Sun, B. Tang, H2O2-mediated electrosynthesis of nitrate from air, Nat. Synth 3 (6) (2024) 763-773. [11] A.J. Martin, T. Shinagawa, J. Perez-Ramirez, Electrocatalytic reduction of nitrogen: From Haber-Bosch to ammonia artificial leaf, Chem 5 (2) (2019) 263-283. [12] X.L. Xue, R.P. Chen, C.Z. Yan, P.Y. Zhao, Y. Hu, W.J. Zhang, S.Y. Yang, Z. Jin, Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives, Nano Res. 12 (6) (2019) 1229-1249. [13] H.M. Liu, N. Guijarro, J.S. Luo, The pitfalls in electrocatalytic nitrogen reduction for ammonia synthesis, J. Energy Chem. 61 (2021) 149-154. [14] M. Hattori, S. Iijima, T. Nakao, H. Hosono, M. Hara, Solid solution for catalytic ammonia synthesis from nitrogen and hydrogen gases at 50 ℃, Nat. Commun. 11 (1) (2020) 2001. [15] S. Feng, W.B. Gao, J.P. Guo, H.J. Cao, P. Chen, Electrodriven chemical looping ammonia synthesis mediated by lithium imide, ACS Energy Lett. 8 (3) (2023) 1567-1574. [16] Y.W. Ren, C. Yu, L.S. Wang, X.Y. Tan, Z. Wang, Q.B. Wei, Y.F. Zhang, J.S. Qiu, Microscopic-level insights into the mechanism of enhanced NH3 synthesis in plasma-enabled cascade N2 oxidation-electroreduction system, J. Am. Chem. Soc. 144 (23) (2022) 10193-10200. [17] W. Liu, M.Y. Xia, C. Zhao, B. Chong, J.H. Chen, H. Li, H.H. Ou, G.D. Yang, Efficient ammonia synthesis from the air using tandem non-thermal plasma and electrocatalysis at ambient conditions, Nat. Commun. 15 (1) (2024) 3524. [18] I. Muzammil, Y.N. Kim, H. Kang, D.K. Dinh, S. Choi, C. Jung, Y.H. Song, E. Kim, J.M. Kim, D.H. Lee, Plasma catalyst-integrated system for ammonia production from H2O and N2 at atmospheric pressure, ACS Energy Lett. 6 (8) (2021) 3004-3010. [19] X.Q. Yan, Y. Zhao, Y.Z. Zhang, B.W. Wang, H.H. Fan, H.H. Ou, X.L. Hou, Q.Z. Huang, H.G. Hu, G.D. Yang, A five-fold twin structure copper for enhanced electrocatalytic nitrogen reduction to sustainable ammonia, AlChE. J. 71 (3) (2025) e18654. [20] J. Yang, T.Y. Li, C.S. Zhong, X.X. Guan, C. Hu, Nitrogen fixation in water using air phase gliding arc plasma, J. Electrochem. Soc. 163 (10) (2016) E288-E292. [21] A.J. Wu, J. Yang, B. Xu, X.Y. Wu, Y.H. Wang, X.J. Lv, Y.C. Ma, A.N. Xu, J.G. Zheng, Q.H. Tan, Y.Q. Peng, Z.F. Qi, H.F. Qi, J.F. Li, Y.L. Wang, J. Harding, X. Tu, A.Q. Wang, J.H. Yan, X.D. Li, Direct ammonia synthesis from the air via gliding arc plasma integrated with single atom electrocatalysis, Appl. Catal. B Environ. 299 (2021) 120667. [22] J. Ding, W.Y. Li, Q.Q. Chen, J.F. Liu, S. Tang, Z.W. Wang, L.W. Chen, H.M. Zhang, Sustainable ammonia synthesis from air by the integration of plasma and electrocatalysis techniques, Inorg. Chem. Front. 10 (19) (2023) 5762-5771. [23] Y. Lv, J.H. Chen, P.W. Bai, T. Xie, J.J. Liu, H.H. Ou, G.D. Yang, Mass transfer and electrochemical behavior of nitrate reduction to ammonia in electrocatalytic flow cell reactor, AlChE. J. 70 (1) (2024) e18262. [24] Y.T. Wang, C.H. Wang, M.Y. Li, Y.F. Yu, B. Zhang, Nitrate electroreduction: Mechanism insight, in situ characterization, performance evaluation, and challenges, Chem. Soc. Rev. 50 (12) (2021) 6720-6733. [25] X.Y. Dai, L. Tian, Z.X. Liu, W.S. Xu, Y.P. Liu, Y. Liu, Nanoreactor based on cyclodextrin for direct electrocatalyzed ammonia synthesis, ACS Nano 16 (11) (2022) 18398-18407. [26] D. Yin, D. Chen, Y.X. Zhang, W.J. Wang, Q. Quan, W. Wang, Y. Meng, Z.X. Lai, Z. Yang, S. Yip, C.Y. Wong, X.M. Bu, X.Y. Wang, J.C. Ho, Synergistic active phases of transition metal oxide heterostructures for highly efficient ammonia electrosynthesis, Adv. Funct. Mater. 33 (50) (2023) 2303803. [27] Y.F. Zhang, C. Zhu, H.X. Wei, Y. Tian, W.D. Xia, C. Wang, A highly effective N2 fixation method based on reverse vortex flow gliding arc plasma under water, J. Clean. Prod. 452 (2024) 142158. [28] Y. Lv, W.K. Teng, Y. Li, H.H. Ou, T. Xie, X.Q. Yan, G.D. Yang, Electrochemical macrokinetics analysis of nitrite electrocatalytic reduction to ammonia, AlChE. J. 70 (12) (2024) e18578. [29] B.S. Patil, F.J.J. Peeters, G.J. van Rooij, J.A. Medrano, F. Gallucci, J. Lang, Q. Wang, V. Hessel, Plasma assisted nitrogen oxide production from air: Using pulsed powered gliding arc reactor for a containerized plant, AlChE. J. 64 (2) (2018) 526-537. [30] S. Yang, A. Chen, Z.J. Tang, Z.X. Wu, P. Li, Y.B. Wang, X.Q. Wang, X. Jin, S.C. Bai, C.Y. Zhi, Regulating the electrochemical reduction kinetics by the steric hindrance effect for a robust Zn metal anode, Energy Environ. Sci. 17 (3) (2024) 1095-1106. [31] A.A. Shah, M.J. Watt-Smith, F.C. Walsh, A dynamic performance model for redox-flow batteries involving soluble species, Electrochim. Acta 53 (27) (2008) 8087-8100. [32] O.A. El-Shafie, R.M. El-Maghraby, J. Albo, S.K. Fateen, A. Abdelghany, Modeling and numerical investigation of the performance of gas diffusion electrodes for the electrochemical reduction of carbon dioxide to methanol, Ind. Eng. Chem. Res. 59 (47) (2020) 20929-20942. [33] H. Bouaboula, M. Ouikhalfan, I. Saadoune, J. Chaouki, A. Zaabout, Y. Belmabkhout, Addressing sustainable energy intermittence for green ammonia production, Energy Rep. 9 (2023) 4507-4517. [34] L. Hatton, R. Banares-Alcantara, S. Sparrow, F. Lott, N. Salmon, Assessing the impact of climate change on the cost of production of green ammonia from offshore wind, Int. J. Hydrog. Energy 49 (2024) 635-643. |