中国化学工程学报 ›› 2025, Vol. 87 ›› Issue (11): 66-79.DOI: 10.1016/j.cjche.2025.05.004
Fan Yang, Mengsha Han, Xudong Zhang, Gang Liu, Yugao Wang, Jun Shen
收稿日期:2025-02-25
修回日期:2025-05-14
接受日期:2025-05-15
出版日期:2025-11-28
发布日期:2025-05-22
通讯作者:
Jun Shen,E-mail:shenjun@tyut.edu.cn
基金资助:Fan Yang, Mengsha Han, Xudong Zhang, Gang Liu, Yugao Wang, Jun Shen
Received:2025-02-25
Revised:2025-05-14
Accepted:2025-05-15
Online:2025-11-28
Published:2025-05-22
Contact:
Jun Shen,E-mail:shenjun@tyut.edu.cn
Supported by:摘要: This study explores green and low-viscosity deep eutectic solvents (DESs) for the efficient extraction of quinoline (QUI) from wash oil. The hydrogen bond donors and acceptors constituting DESs were initially screened based on thermodynamic properties predicted by the conductor-like screening model for real solvents (COSMO-RS), followed by further selection considering the viscosity and cost of the formed DESs. Phase equilibrium experiments showed that the DES composed of triethylmethylammonium chloride and formic acid exhibited the best extraction performance among the selected candidates. Key extraction parameters were optimized experimentally, achieving a maximum QUI extraction efficiency of 97.18% under mild conditions. Molecular dynamics simulations revealed that the interactions between quaternary ammonium cations and QUI play a crucial role in the extraction mechanism. This study provides insights into the use of DESs for QUI extraction and demonstrates their potential for application to other coal tar derivatives.
Fan Yang, Mengsha Han, Xudong Zhang, Gang Liu, Yugao Wang, Jun Shen. Green and low-viscosity deep eutectic solvents for the extraction of quinoline from wash oil: Experimental investigation and molecular dynamics simulation[J]. 中国化学工程学报, 2025, 87(11): 66-79.
Fan Yang, Mengsha Han, Xudong Zhang, Gang Liu, Yugao Wang, Jun Shen. Green and low-viscosity deep eutectic solvents for the extraction of quinoline from wash oil: Experimental investigation and molecular dynamics simulation[J]. Chinese Journal of Chemical Engineering, 2025, 87(11): 66-79.
| [1] C. Manera, H.P. Fragoso, A.A. Agra, B.D. Flores, E. Osorio, M. Godinho, A.C.F. Vilela, Systematic mapping of studies on coal tar and pitch over the last five decades (1970-2023), Chem. Eng. Res. Des. 196 (2023) 427-450. [2] L.M. Nainwal, S. Tasneem, W. Akhtar, G. Verma, M.F. Khan, S. Parvez, M. Shaquiquzzaman, M. Akhter, M.M. Alam, Green recipes to quinoline: A review, Eur. J. Med. Chem. 164 (2019) 121-170. [3] W.B. Zhao, W.S. Zhang, J. Shen, Y.G. Wang, Y.X. Niu, Separation of quinoline from quinoline/2-methylnaphthalene using deep eutectic solvents: Experimental and COSMO-RS prediction, J. Mol. Liq. 408 (2024) 125345. [4] H. Wang, Z.Y. Luo, M.X. Fang, Q.H. Wang, Controlled separation of coal tar based on different temperature, Fuel 258 (2019) 115700. [5] F. Yang, Q.Q. Zhang, H. Xin, T.Z. Wu, Z.G. Zhang, Liquid-liquid equilibrium measurement for the separation of n-propanol + n-propyl acetate using imidazolium-based ionic liquids with different anions at T = 303.15 K, J. Chem. Eng. Data 68 (4) (2023) 936-944. [6] F. Yang, T.Z. Wu, T.H. Song, Q.Q. Zhang, Z.G. Zhang, Separation of n-propanol-n-propyl acetate azeotropic system by extractive distillation with ionic liquids: COSMO-RS prediction, experimental investigation and quantum chemical calculation, J. Mol. Liq. 396 (2024) 124007. [7] M.J. Earle, J.M.S.S. Esperanca, M.A. Gilea, J.N. Canongia Lopes, L.P.N. Rebelo, J.W. Magee, K.R. Seddon, J.A. Widegren, The distillation and volatility of ionic liquids, Nature 439 (7078) (2006) 831-834. [8] H. Olivier-Bourbigou, L. Magna, D. Morvan, Ionic liquids and catalysis: Recent progress from knowledge to applications, Appl. Catal. A Gen. 373 (1-2) (2010) 1-56. [9] J.F. Brennecke, E.J. Maginn, Ionic liquids: Innovative fluids for chemical processing, AIChE J. 47 (11) (2001) 2384-2389. [10] S.G. Lee, Functionalized imidazolium salts for task-specific ionic liquids and their applications, Chem. Commun. (10) (2006) 1049-1063. [11] S.Y. Hong, J. Im, J. Palgunadi, S.D. Lee, J.S. Lee, H.S. Kim, M. Cheong, K.D. Jung, Ether-functionalized ionic liquids as highly efficient SO2 absorbents, Energy Environ. Sci. 4 (5) (2011) 1802-1806. [12] Y.X. Fu, X.L. Song, Y.M. Pang, Y.N. Zheng, L.G. Gao, Extraction of quinoline from toluene solution of wash oil using 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM] [PF6]): Experimental and molecular dynamics simulations, J. Mol. Struct. 1290 (2023) 136000. [13] T. Zhang, D. Wang, L.Z. Zhang, D.M. Xu, J. Gao, Y.X. Ma, Y.L. Wang, Extraction performance and interaction analysis of 2-pyrrolidone-based broensted acidic ionic liquids on removal of quinoline from coal-based products, J. Mol. Liq. 366 (2022) 120320. [14] J.M. Yin, J.P. Wang, Z. Li, D. Li, G. Yang, Y.N. Cui, A.L. Wang, C.P. Li, Deep desulfurization of fuels based on an oxidation/extraction process with acidic deep eutectic solvents, Green Chem. 17 (9) (2015) 4552-4559. [15] A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, Novel solvent properties of choline chloride/urea mixtures, Chem. Commun. (1) (2003) 70-71. [16] E.A. Mernissi Cherigui, K. Sentosun, P. Bouckenooge, H. Vanrompay, S. Bals, H. Terryn, J. Ustarroz, Comprehensive study of the electrodeposition of nickel nanostructures from deep eutectic solvents: Self-limiting growth by electrolysis of residual water, J. Phys. Chem. C 121 (17) (2017) 9337-9347. [17] T. Swebocki, A. Barras, A. Abderrahmani, K. Haddadi, R. Boukherroub, Deep eutectic solvents comprising organic acids and their application in (bio)medicine, Int. J. Mol. Sci. 24 (10) (2023) 8492. [18] J. Chen, M.C. Ali, R.R. Liu, J.C. Munyemana, Z. Li, H.L. Zhai, H.D. Qiu, Basic deep eutectic solvents as reactant, template and solvents for ultra-fast preparation of transition metal oxide nanomaterials, Chin. Chem. Lett. 31 (6) (2020) 1584-1587. [19] J.P. Bittner, N.N. Zhang, L. Huang, P. Dominguez de Maria, S. Jakobtorweihen, S. Kara, Impact of deep eutectic solvents (DESs) and individual DES components on alcohol dehydrogenase catalysis: Connecting experimental data and molecular dynamics simulations, Green Chem. 24 (3) (2022) 1120-1131. [20] W.W. Yan, Z.M. Zong, Z.X. Li, J. Li, G.H. Liu, Z.H. Ma, Y.Y. Zhang, M.L. Xu, F.J. Liu, X.Y. Wei, Effective separation and purification of nitrogen-containing aromatics from the light portion of a high-temperature coal tar using choline chloride and malonic acid: Experimental and molecular dynamics simulation, ACS Sustain. Chem. Eng. 8 (25) (2020) 9464-9471. [21] M. Neubauer, T. Wallek, S. Lux, Deep eutectic solvents as entrainers in extractive distillation-A review, Chem. Eng. Res. Des. 184 (2022) 402-418. [22] J.L. Yan, X.N. Li, M.M. Meng, C.N. Zhao, J. Li, L.Y. Sun, Mechanistic investigation of isobutanol/isobutyl acetate separation by extraction using low-transition temperature mixtures, Ind. Eng. Chem. Res. 62 (33) (2023) 13223-13234. [23] J. Huang, X.Y. Guo, T.Y. Xu, L.Y. Fan, X.P. Zhou, S.H. Wu, Ionic deep eutectic solvents for the extraction and separation of natural products, J. Chromatogr. A 1598 (2019) 1-19. [24] C.H. Shu, H. Cheng, M. Zhao, D. Luo, F. Zhu, H.J. Xie, Synthesis of deep eutectic solvents based on triethylamine and organic acids and their application in fuel oil denitrogenation: A theoretical and experimental study, J. Mol. Liq. 369 (2023) 120863. [25] S. Mulyono, H.F. Hizaddin, I.M. Alnashef, M.A. Hashim, A.H. Fakeeha, M.K. Hadj-Kali, Separation of BTEX aromatics from n-octane using a (tetrabutylammonium bromide + sulfolane) deep eutectic solvent-Experiments and COSMO-RS prediction, RSC Adv. 4 (34) (2014) 17597. [26] X.Y. Wang, Z.H. Li, X.H. Wang, C.C. Wu, I.D. Gates, S.H. Guo, B. Wu, W. Zhu, M.X. Gu, M.W. Gao, D. Liu, C.L. Dai, Intermolecular interactions induced desulfurization/denitrification of oil with deep eutectic solvents, J. Mol. Liq. 366 (2022) 120159. [27] Y.Y. Zuo, J.S. Wu, X.G. Chen, N. Wei, J. Tong, Green and low-cost deep eutectic solvents for efficient extraction of basic and non-basic nitrides in simulated oils, Sep. Purif. Technol. 325 (2023) 124714. [28] Z.H. Li, D. Liu, Z.W. Men, L.H. Song, Y.J. Lv, P.P. Wu, B. Lou, Y.D. Zhang, N. Shi, Q.T. Chen, Insight into effective denitrification and desulfurization of liquid fuel with deep eutectic solvents: An innovative evaluation criterion to filtrate extractants using the compatibility index, Green Chem. 20 (13) (2018) 3112-3120. [29] A.F. Kamarudin, H.F. Hizaddin, L. El-Blidi, E. Ali, M.A. Hashim, M.K. Hadj-Kali, Performance of p-toluenesulfonic acid-based deep eutectic solvent in denitrogenation: Computational screening and experimental validation, Molecules 25 (21) (2020) 5093. [30] D.K. Hu, Q. Wang, X.Y. Wang, T. Li, J. Li, Y.L. Chen, T. Ban, Y.S. Zhang, N. Yalikun, Experimental and mechanistic investigation of amide-based deep eutectic solvents for quinoline extraction and separation from wash oil, Ind. Eng. Chem. Res. 63 (12) (2024) 5397-5410. [31] X.D. Zhang, W.B. Zhao, J. Shen, Y.G. Wang, G. Liu, Y.X. Niu, Q.T. Sheng, Theoretical and experimental exploration for efficient separation of carbazole from anthracene oil with quaternary ammonium salts via forming deep eutectic solvents, J. Mol. Liq. 368 (2022) 120831. [32] X.D. Zhang, J.Y. Wang, J. Shen, Y.G. Wang, G. Liu, Y.X. Niu, Q.T. Sheng, Highly efficient extraction of indole from model wash oil by using environmentally benign deep eutectic solvents, Sep. Purif. Technol. 285 (2022) 120381. [33] X.D. Zhang, Y.H. Liu, J. Shen, Y.G. Wang, G. Liu, Y.X. Niu, Q.T. Sheng, Insight into the experiment and extraction mechanism for separating carbazole from anthracene oil with quaternary ammonium-based deep eutectic solvents, Chin. J. Chem. Eng. 65 (2024) 188-199. [34] F. Yang, X.D. Zhang, Y.G. Wang, G. Liu, J. Shen, Malonic acid-based deep eutectic solvents for the extraction of nitrogen-containing heterocyclic basic compounds from coal tar: Experimental and molecular mechanistic insights, Sep. Purif. Technol. 362 (2025) 131883. [35] A. Klamt, F. Eckert, COSMO-RS: A novel and efficient method for the a priori prediction of thermophysical data of liquids, Fluid Phase Equilib. 172 (1) (2000) 43-72. [36] C.Y. Zhang, Z. Song, C. Jin, J. Nijhuis, T. Zhou, T. Noel, H. Groger, K. Sundmacher, J. van Hest, V. Hessel, Screening of functional solvent system for automatic aldehyde and ketone separation in aldol reaction: A combined COSMO-RS and experimental approach, Chem. Eng. J. 385 (2020) 123399. [37] T. Banerjee, K.K. Verma, A. Khanna, Liquid-liquid equilibrium for ionic liquid systems using COSMO-RS: Effect of cation and anion dissociation, AIChE J. 54 (7) (2008) 1874-1885. [38] F. Eckert, A. Klamt, Fast solvent screening via quantum chemistry: COSMO-RS approach, AIChE J. 48 (2) (2002) 369-385. [39] Q. Liu, X.L. Zhang, Systematic method of screening deep eutectic solvents as extractive solvents for m-cresol/cumene separation, Sep. Purif. Technol. 291 (2022) 120853. [40] H.F. Hizaddin, I. Wazeer, N.A.M. Huzaimi, L. El Blidi, M. Ali Hashim, J.M. Leveque, M.K. Hadj-Kali, Extraction of phenolic compound from model pyrolysis oil using deep eutectic solvents: Computational screening and experimental validation, Separations 9 (11) (2022) 336. [41] Z.X. Qin, H.Y. Cheng, Z. Song, L.J. Ji, L.F. Chen, Z.W. Qi, Selection of deep eutectic solvents for extractive deterpenation of lemon essential oil, J. Mol. Liq. 350 (2022) 118524. [42] M. Larriba, M. Ayuso, P. Navarro, N. Delgado-Mellado, M. Gonzalez-Miquel, J. Garcia, F. Rodriguez, Choline chloride-based deep eutectic solvents in the dearomatization of gasolines, ACS Sustain. Chem. Eng. 6 (1) (2018) 1039-1047. [43] F. Bezold, M.E. Weinberger, M. Minceva, Assessing solute partitioning in deep eutectic solvent-based biphasic systems using the predictive thermodynamic model COSMO-RS, Fluid Phase Equilib. 437 (2017) 23-33. [44] Y.S. Dai, X.J. Chu, Y.Y. Jiao, Y.N. Li, F.L. Shan, S. Zhao, G.X. Li, Z.G. Lei, P.Z. Cui, Z.Y. Zhu, Y.L. Wang, Molecular insights into azeotrope separation in the methyl tert-butyl ether production process using ChCl-based deep eutectic solvents, Chem. Eng. Sci. 264 (2022) 118179. [45] T. Lu, F.W. Chen, Multiwfn: A multifunctional wavefunction analyzer, J. Comput. Chem. 33 (5) (2012) 580-592. [46] C. Wang, W. Li, K. Liao, Z. Wang, Y. Wang, K. Gong, AuToFF Program, Vesrion 1.0. Hzwtech, Shanghai (2023), https://cloud.hzwtech.com/web/personal-space/online-tool/auto-ff-home. [47] L. Martinez, R. Andrade, E.G. Birgin, J.M. Martinez, PACKMOL: A package for building initial configurations for molecular dynamics simulations, J. Comput. Chem. 30 (13) (2009) 2157-2164. [48] W. Humphrey, A. Dalke, K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graph. 14 (1) (1996) 33-38, 27-28. [49] A.B. Pereiro, A. Rodriguez, A study on the liquid-liquid equilibria of 1-alkyl-3-methylimidazolium hexafluorophosphate with ethanol and alkanes, Fluid Phase Equilib. 270 (1-2) (2008) 23-29. [50] Z. Song, X.T. Hu, Y.G. Zhou, T. Zhou, Z.W. Qi, K. Sundmacher, Rational design of double salt ionic liquids as extraction solvents: Separation of thiophene/n-octane as example, AIChE J. 65 (8) (2019) e16625. [51] A.S. Darwish, F. Abu Hatab, T. Lemaoui, O.A.Z. Ibrahim, G. Almustafa, B. Zhuman, S.E.E. Warrag, M.K. Hadj-Kali, Y. Benguerba, I.M. Alnashef, Multicomponent extraction of aromatics and heteroaromatics from diesel using acidic eutectic solvents: Experimental and COSMO-RS predictions, J. Mol. Liq. 336 (2021) 116575. [52] T. Lemaoui, N. El Houda Hammoudi, I.M. Alnashef, M. Balsamo, A. Erto, B. Ernst, Y. Benguerba, Quantitative structure properties relationship for deep eutectic solvents using Sσ-profile as molecular descriptors, J. Mol. Liq. 309 (2020) 113165. [53] M. Bisht, I.P.E. Macario, M.C. Neves, J.L. Pereira, S. Pandey, R.D. Rogers, J.A.P. Coutinho, S.P.M. Ventura, Enhanced dissolution of chitin using acidic deep eutectic solvents: A sustainable and simple approach to extract chitin from crayfish shell wastes as alternative feedstocks, ACS Sustain. Chem. Eng. 9 (48) (2021) 16073-16081. [54] D. Othmer, P. Tobias, Liquid-liquid extraction data-The line correlation, Ind. Eng. Chem. 34 (6) (1942) 693-696. [55] I. Bachman, Tie lines in ternary liquid systems, Ind. Eng. Chem. Anal. Ed. 12 (1) (1940) 38-39. [56] D.B. Hand, Dineric distribution, J. Phys. Chem. 34 (9) (1930) 1961-2000. [57] D.M. Xu, L.Z. Zhang, J. Gao, Z.S. Zhang, Z.F. Cui, Measurement and correlation of liquid-liquid equilibrium for the ternary system 2,2,3,3,4,4,5,5-octafluoro-1-pentanol + methanol + water at (298.15, 308.15, and 318.15) K, Fluid Phase Equilib. 409 (2016) 377-382. [58] H. Renon, J.M. Prausnitz, Local compositions in thermodynamic excess functions for liquid mixtures, AIChE J. 14 (1) (1968) 135-144. [59] J.A. Labarta, M.M. Olaya, A. Marcilla, GMcal_TieLinesLL: Graphical User Interface (GUI) for the Topological Analysis of Calculated GM Surfaces and Curves, including Tie-Lines, Hessian Matrix, Spinodal Curve, Plait Point Location, etc. for Binary and Ternary Liquid-Liquid Equilibrium (LLE) Data, (2015), http://rua.ua.es/dspace/handle/10045/51725. [60] A. Marcilla, J.A. Reyes-Labarta, M.M. Olaya, Should we trust all the published LLE correlation parameters in phase equilibria? Necessity of their assessment prior to publication, Fluid Phase Equilib. 433 (2017) 243-252. [61] C. Sun, J.F. Xing, Y.J. Qu, Y.L. Zhang, P.Z. Cui, Y.L. Wang, J. Gao, Liquid-liquid equilibrium measurements and interaction explorations for separation of dimethyl carbonate and isopropyl alcohol using ChCl-based deep eutectic solvents, Ind. Eng. Chem. Res. 62 (23) (2023) 9302-9312. [62] H.C. Yan, Y.Y. Han, S.W. Sun, M. Han, W.Y. Fan, Q.S. Li, Liquid-liquid equilibrium for ternary systems of water + tetrahydrofurfuryl alcohol + isopentanol/1-hexanol at 303.2, 313.2, 323.2 K, J. Chem. Thermodyn. 166 (2022) 106688. [63] L.Z. Zhang, D.M. Xu, J. Gao, S.X. Zhou, L.W. Zhao, Z.S. Zhang, Extraction and mechanism for the separation of neutral N-compounds from coal tar by ionic liquids, Fuel 194 (2017) 27-35. [64] Q. Zaib, M.J. Eckelman, Y. Yang, D. Kyung, Are deep eutectic solvents really green?: A life-cycle perspective, Green Chem. 24 (20) (2022) 7924-7930. [65] M. Marchel, H. Cieslinski, G. Boczkaj, Deep eutectic solvents microbial toxicity: Current state of art and critical evaluation of testing methods, J. Hazard. Mater. 425 (2022) 127963. [66] C.F. Yao, X.Y. Li, Q.Y. Chen, Z. Liu, H.S. Wu, W.X. Zhang, Y.Q. Miao, W.J. Huang, Investigating the microscopic mechanisms of deep eutectic solvents formed with natural compounds: Multiscale simulation and cross-validation, J. Clean. Prod. 441 (2024) 140988. [67] W.X. Zhang, Z.G. Lei, Y. Wang, J. Wei, S.H. Ren, Y.C. Hou, W.Z. Wu, Molecular mechanism and process of efficient separation of benzene and cyclohexane using a low-cost deep eutectic solvent, Chem. Eng. Sci. 279 (2023) 118963. [68] Z.R. Chen, Y.Y. Shen, Z.Y. Ma, D. Yao, J.G. Zhao, Z.Y. Zhu, F.Q. Meng, Y.X. Ma, P.Z. Cui, L. Wang, Y.L. Wang, Mechanism analysis and sustainability evaluation of imidazole ionic liquid extraction based on molecular dynamics, J. Mol. Liq. 323 (2021) 115066. [69] J.H. Yao, L. Xiao, C.L. Li, B. Wang, Y.Y. Chen, X.J. Yan, Z.F. Cui, Exploration of the multiscale interaction mechanism between natural deep eutectic solvents and silybin by QC calculation and MD simulation, J. Mol. Liq. 363 (2022) 119768. [70] M. Brehm, B. Kirchner, TRAVIS - A free analyzer and visualizer for Monte Carlo and molecular dynamics trajectories, J. Chem. Inf. Model. 51 (8) (2011) 2007-2023. [71] H.S. Wu, X.Y. Li, Q.Y. Chen, Z. Liu, X.G. Wang, W.X. Zhang, Y.Q. Miao, C.F. Yao, Molecular mechanism and extraction performance evaluation of choline chloride-based deep eutectic solvents for phenol separation from oil: Different glycols as hydrogen bond donors, Fuel 367 (2024) 131530. [72] P.K. Naik, M. Mohan, T. Banerjee, S. Paul, V.V. Goud, Molecular dynamic simulations for the extraction of quinoline from heptane in the presence of a low-cost phosphonium-based deep eutectic solvent, J. Phys. Chem. B 122 (14) (2018) 4006-4015. |
| [1] | Yuan Tian, Honghua Zhang, Yueyang Qiao, Han Yang, Yanrong Liu, Xiaoyan Ji. Intelligent prediction of ionic liquids and deep eutectic solvents by machine learning[J]. 中国化学工程学报, 2025, 84(8): 227-243. |
| [2] | Bo Pan, Muneeb Ul Hassan Naseer, Hao Du, Shaona Wang, Yeqing Lyu, Biao Liu, Haixu Wang, Lanjie Li. Separation and recovery of V/W/Na from waste SCR catalyst leaching solution using membrane electrolysis—Ion morphology pretreatment solvent extraction-stripping method[J]. 中国化学工程学报, 2025, 82(6): 153-164. |
| [3] | Jingjing Sun, Ruoque Mao, Xiaoqian Fu, Shanjing Yao, Dongqiang Lin. Exosomes separation with aqueous two-phase systems from bovine milk[J]. 中国化学工程学报, 2025, 81(5): 1-10. |
| [4] | Kaoutar Hjouji, Ibrahim Atemni, Rajesh Haldhar, Moussa Ouakki, Tarik Ainane, Mustapha Taleb, Seong-Cheol Kim, Zakia Rais. Green corrosion inhibition of mild steel in acidic media using Datura stramonium seed extract: A study for sustainable engineering applications[J]. 中国化学工程学报, 2025, 80(4): 281-302. |
| [5] | Li Zhang, Shuyu Wang, Cuijiao Zhao, Menglong Liu, Tao Ye, Wenwen Ding, Hongjian Zhou, Zhongti Sun, Weiji Dai, Saifang Huang. Copper hexacyanoferrate framework with dual redox centers for selective lithium extraction in hybrid capacitive deionization[J]. 中国化学工程学报, 2025, 88(12): 256-264. |
| [6] | Xinyu Liu, Yue Sun, Jing Wen, Tao Jiang, Lan Zhang, Jinchao Yang, Jiayu Dai. Green extraction of vanadium resources: A process for the preparation of vanadium oxide in an ammonia-free system[J]. 中国化学工程学报, 2025, 88(12): 265-273. |
| [7] | Xile Tian, Fancheng Meng, Xianglan Zhang, Yongchao Wang, Yahui Liu, Jian Zhang, Shuai Zhao, Desheng Chen, Lina Wang, Tao Qi. Selective separation of vanadium from the high-acidity leaching liquor through chelating extraction by the ketoxime extractant[J]. 中国化学工程学报, 2025, 87(11): 262-272. |
| [8] | Jie Liu, Xiaoyan Tan, Yibo Xu, Zijuan Li, Yanan Xue, Faquan Yu. Mechanistic insights into water desalination through two-dimensional MXene-graphene oxide membranes: A molecular simulation study[J]. 中国化学工程学报, 2025, 87(11): 313-322. |
| [9] | Baohong Liu, Xianlong Liu, Ruijing Yang, Chengxiang Shi, Gewei Zhang, Zhensheng Shen, Lun Pan, Zhenfeng Huang, Xiangwen Zhang, Jijun Zou. Synthesis of aviation fuel by controllable oligomerization of furfuryl alcohol[J]. 中国化学工程学报, 2025, 86(10): 177-185. |
| [10] | Xiujing Peng, Ling Li, Haiyin Yu, Riming Hu, Jianhui Su, Miaomiao Zhang, Yu Cui, Xuchuan Jiang, Guoxin Sun. High extraction efficiency of N,N,N′,N′-tetracyclohexyldiglycolamide for Sr(II): An experimental and crystal structure study[J]. 中国化学工程学报, 2025, 77(1): 1-9. |
| [11] | Bharat Prasad Sharma, Tianzhang Wang, Yufeng Liang, Jinping Xiong, Liangrong Yang, Zheng Li. Synergistic solvent extraction system of bis(pyridin-2-ylmethyl) dodecan-1-amine and dinonylnaphthalene for enhanced selective extraction of nickel and cobalt[J]. 中国化学工程学报, 2025, 77(1): 10-18. |
| [12] | Limin Wang, Jinrong Duan, Bei Liu, Zhi Li, Guangjin Chen. The effect of ethylene-vinyl acetate copolymer on the formation process of wax crystals and hydrates[J]. 中国化学工程学报, 2024, 73(9): 109-119. |
| [13] | Juan Wang, Yanbing Zhu, Zedong Jiang, Xiping Du, Mingjing Zheng, Lijun Li, Hui Ni, Yuanpeng Wang, Zhipeng Li, Qingbiao Li. Characteristics and mechanism of Ni2+ and Cd2+ adsorption by recovered perlite from agar extraction residue[J]. 中国化学工程学报, 2024, 72(8): 141-152. |
| [14] | Baowei Niu, Yanjie Yi, Yuwen Wei, Fuzhen Zhang, Lili Wang, Li Xia, Xiaoyan Sun, Shuguang Xiang. Phase equilibrium data prediction and process optimizationin butadiene extraction process[J]. 中国化学工程学报, 2024, 71(7): 1-12. |
| [15] | Yuhan Wang, Danqi Xue, Jingjing Zhuo, Zhouyang Xiang. Optimizing hemicelluloses pre-extraction in eucalyptus kraft pulping: A pathway towards enhancing pulp mill biorefineries[J]. 中国化学工程学报, 2024, 70(6): 162-172. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001993号 
