[1] P. Greve, T. Kahil, J. Mochizuki, T. Schinko, Y. Satoh, P. Burek, G. Fischer, S. Tramberend, R. Burtscher, S. Langan, Y. Wada, Global assessment of water challenges under uncertainty in water scarcity projections, Nat. Sustain. 1 (2018) 486-494. [2] M.M. Mekonnen, A.Y. Hoekstra, Four billion people facing severe water scarcity, Sci. Adv. 2 (2) (2016) e1500323. [3] M. Prajapati, M. Shah, B. Soni, A review of geothermal integrated desalination: a sustainable solution to overcome potential freshwater shortages, J. Clean. Prod. 326 (2021) 129412. [4] K.P. Lee, T.C. Arnot, D. Mattia, A review of reverse osmosis membrane materials for desalination: Development to date and future potential, J. Membr. Sci. 370 (1-2) (2011) 1-22. [5] T.S. Chung, S. Zhang, K.Y. Wang, J.C. Su, M.M. Ling, Forward osmosis processes: yesterday, today and tomorrow, Desalination 287 (2012) 78-81. [6] J. Shen, G.P. Liu, Y. Han, W.Q. Jin, Artificial channels for confined mass transport at the sub-nanometre scale, Nat. Rev. Mater. 6 (2021) 294-312. [7] J.D. Yang, Z.K. Li, Z.Y. Wang, S. Yuan, Y. Li, W. Zhao, X.W. Zhang, 2D material based thin-film nanocomposite membranes for water treatment, Adv. Mater. Technol. 6 (10) (2021) 2000862. [8] Y. Kang, Y. Xia, H.T. Wang, X.W. Zhang, 2D laminar membranes for selective water and ion transport, Adv. Funct. Mater. 29 (29) (2019) 1902014. [9] C.N. Yeh, K. Raidongia, J.J. Shao, Q.H. Yang, J.X. Huang, On the origin of the stability of graphene oxide membranes in water, Nat. Chem. 7 (2) (2014) 166-170. [10] S.K. Tiwary, M. Singh, S.V. Chavan, A. Karim, Graphene oxide-based membranes for water desalination and purification, NPJ 2D Mater. Appl. 8 (2024) 27. [11] W.W. Lei, D. Portehault, D. Liu, S. Qin, Y. Chen, Porous boron nitride nanosheets for effective water cleaning, Nat. Commun. 4 (2013) 1777. [12] N. Vafa, A. Hamed Mashhadzadeh, M. Zarghami Dehaghani, B. Firoozabadi, S. Nouranian, C. Spitas, Molecular dynamics simulation of hexagonal boron nitride slit membranes for wastewater treatment, J. Mol. Liq. 382 (2023) 121842. [13] Z.L. Song, Y.L. Niu, J. Yang, L. Chen, J.L. Chen, Comparison of water desalination performance of porous graphene and MoS2 nanosheets, RSC Adv. 12 (42) (2022) 27641-27647. [14] J.Y. Zhu, W.Q. Meng, Q. Xue, K.S. Zhang, Two dimensional sulfonated molybdenum disulfide (S-MoS2) thin-film nanocomposite nanofiltration membrane for selective desalination, J. Membr. Sci. 676 (2023) 121574. [15] X.M. Yang, X.N. Yang, Molecular simulation of water permeation and salt rejection for MoS2 nanoslit membranes, Desalination 564 (2023) 116787. [16] S.W. Liao, Q. Ke, Y.Y. Wei, L.B. Li, Water’s motions in x-y and z directions of 2D nanochannels: Entirely different but tightly coupled, Nano Res. 16 (5) (2023) 6298-6307. [17] Y.C. Liu, D.Q. Xie, M.R. Song, L.Z. Jiang, G. Fu, L. Liu, J.Y. Li, Water desalination across multilayer graphitic carbon nitride membrane: Insights from non-equilibrium molecular dynamics simulations, Carbon 140 (2018) 131-138. [18] Y.C. Liu, Y.J. Zou, H. Zhu, S. Xie, J.H. Wu, J.L. Li, J.Y. Li, Effect of inhomogeneous structure on the water desalination performance of graphitic carbon nitride nanochannels: a molecular dynamics study, J. Mol. Liq. 396 (2024) 123953. [19] H.E. Karahan, K. Goh, C.J. Zhang, E. Yang, C. Yildirim, C.Y. Chuah, M.G. Ahunbay, J. Lee, S.B. Tantekin-Ersolmaz, Y. Chen, T.H. Bae, MXene materials for designing advanced separation membranes, Adv. Mater. 32 (29) (2020) e1906697. [20] J. Usman, L.T. Yogarathinam, N. Baig, S.I. Abba, R. Chrystie, I.H. Aljundi, MXene-enhanced sulfonated TFN nanofiltration membranes for improved desalination performance, Desalination 581 (2024) 117566. [21] N. Albayati, Z.A. Naser, H.A. Baqi Ahmed, M. Kadhom, P. Olusakin Oladoye, A comprehensive review on the use of Ti3C2Tx MXene in membrane-based water treatment, Sep. Purif. Technol. 345 (2024) 127448. [22] M. Berkani, A. Smaali, F. Almomani, Y. Vasseghian, Recent advances in MXene-based nanomaterials for desalination at water interfaces, Environ. Res. 203 (2022) 111845. [23] Y.A.J. Al-Hamadani, B.M. Jun, M. Yoon, N. Taheri-Qazvini, S.A. Snyder, M. Jang, J. Heo, Y. Yoon, Applications of MXene-based membranes in water purification: a review, Chemosphere 254 (2020) 126821. [24] C.E. Ren, K.B. Hatzell, M. Alhabeb, Z. Ling, K.A. Mahmoud, Y. Gogotsi, Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes, J Phys Chem Lett 6 (20) (2015) 4026-4031. [25] L. Ding, Y. Wei, Y. Wang, H. Chen, J. Caro, H. Wang, A two-dimensional lamellar membrane: MXene nanosheet stacks, Angew Chem Int Ed 56 (7) (2017) 1825-1829. [26] L. Ding, L.B. Li, Y.C. Liu, Y. Wu, Z. Lu, J.J. Deng, Y.Y. Wei, J. Caro, H.H. Wang, Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater, Nat. Sustain. 3 (2020) 296-302. [27] B.C. Meng, G.Z. Liu, Y.Y. Mao, F. Liang, G.P. Liu, W.Q. Jin, Fabrication of surface-charged MXene membrane and its application for water desalination, J. Membr. Sci. 623 (2021) 119076. [28] H.Y. Luo, N. Xu, Y.N. Li, J.Z. Li, W.L. Ji, P. Nian, Z. Wang, Y.B. Wei, Amino acid-bonded Ti3C2Tx MXene nanofiltration membranes with superior antifouling property for enhanced water purification, J. Membr. Sci. 693 (2024) 122384. [29] R.P. Pandey, K. Rasool, V.E. Madhavan, B. Aissa, Y. Gogotsi, K.A. Mahmoud, Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets, J. Mater. Chem. A 6 (8) (2018) 3522-3533. [30] X.Y. Ma, A.Q. Wang, J.L. Miao, T.T. Fan, 2D lamellar membrane with MXene hetero-intercalated small sized graphene oxide for harsh environmental wastewater treatment, Sep. Purif. Technol. 311 (2023) 123248. [31] T. Liu, X.Y. Liu, N. Graham, W.Z. Yu, K.N. Sun, Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification performance, J. Membr. Sci. 593 (2020) 117431. [32] G.Y. Zeng, Q.Q. Lin, K. Wei, Y.C. Liu, S.Z. Zheng, Y.Q. Zhan, S.J. He, T. Patra, Y.H. Chiao, High-performing composite membrane based on dopamine-functionalized graphene oxide incorporated two-dimensional MXene nanosheets for water purification, J. Mater. Sci. 56 (11) (2021) 6814-6829. [33] R. Chang, J. Ma, Y.Y. Hou, J.Z. Xu, Graphene oxide intercalated with MXene as composite membranes with improved permeability for wastewater treatment, ACS Appl. Nano Mater. 7 (10) (2024) 11749-11756. [34] X.Y. Ma, T.T. Fan, G. Wang, Z.H. Li, J.H. Lin, Y.Z. Long, High performance GO/MXene/PPS composite filtration membrane for dye wastewater treatment under harsh environmental conditions, Compos. Commun. 29 (2022) 101017. [35] S.C. Wei, Y. Xie, Y.D. Xing, L.C. Wang, H.Q. Ye, X. Xiong, S. Wang, K. Han, Two-dimensional graphene Oxide/MXene composite lamellar membranes for efficient solvent permeation and molecular separation, J. Membr. Sci. 582 (2019) 414-422. [36] S.L. Li, J. Lu, D. Zou, L.L. Cui, B. Chen, F. Wang, J. Qiu, T.X. Yu, Y.Q. Sun, W.H. Jing, Constructing reduced porous graphene oxide for tailoring mass-transfer channels in ultrathin MXene (Ti3C2T x) membranes for efficient dye/salt separation, Chem. Eng. J. 457 (2023) 141217. [37] Q. Ke, X.T. Gong, S.W. Liao, C.X. Duan, L.B. Li, Effects of thermostats/barostats on physical properties of liquids by molecular dynamics simulations, J. Mol. Liq. 365 (2022) 120116. [38] L.B. Li, T. Zhang, Y.F. Duan, Y.Y. Wei, C.J. Dong, L. Ding, Z.W. Qiao, H.H. Wang, Selective gas diffusion in two-dimensional MXene lamellar membranes: insights from molecular dynamics simulations, J. Mater. Chem. A 6 (25) (2018) 11734-11742. [39] T. Si, X.Y. Ma, T.R. Wang, S. Tak Chu, J. Fan, Improvement of desalination performance by adjusting the arrangement of lamellar MXene membrane, Sep. Purif. Technol. 322 (2023) 124265. [40] X.Y. Ma, X.H. Zhu, C.X. Huang, J. Fan, Exploring the potential of MXene nanoslit for water desalination through molecular dynamics simulations, Desalination 556 (2023) 116560. [41] X.Y. Ma, X.H. Zhu, C.X. Huang, J. Fan, Revealing the effects of terminal groups of MXene on the water desalination performance, J. Membr. Sci. 647 (2022) 120334. [42] E.Y.M. Ang, T.Y. Ng, J. Yeo, R.M. Lin, Z.S. Liu, K.R. Geethalakshmi, Investigations on different two-dimensional materials as slit membranes for enhanced desalination, J. Membr. Sci. 598 (2020) 117653. [43] K. Meidani, Z.L. Cao, A. Barati Farimani, Titanium carbide MXene for water desalination: a molecular dynamics study, ACS Appl. Nano Mater. 4 (6) (2021) 6145-6151. [44] H.Y. He, J. Klinowski, M. Forster, A. Lerf, A new structural model for graphite oxide, Chem. Phys. Lett. 287 (1-2) (1998) 53-56. [45] A.J.P. Neto, V.V. Chaban, E.E. Fileti, Hydration peculiarities of graphene oxides with multiple oxidation degrees, Phys. Chem. Chem. Phys. 19 (48) (2017) 32333-32340. [46] H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud’homme, R. Car, D.A. Saville, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide, J Phys Chem B 110 (17) (2006) 8535-8539. [47] A.V. Talyzin, T. Hausmaninger, S.J. You, T. Szabo, The structure of graphene oxide membranes in liquid water, ethanol and water-ethanol mixtures, Nanoscale 6 (1) (2014) 272-281. [48] S. Kim, S. Zhou, Y. Hu, M. Acik, Y.J. Chabal, C. Berger, W. de Heer, A. Bongiorno, E. Riedo, Room-temperature metastability of multilayer graphene oxide films, Nat. Mater. 11 (6) (2012) 544-549. [49] D.X. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice, R.S. Ruoff, Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy, Carbon 47 (1) (2009) 145-152. [50] R.Y. Han, P.Y. Wu, High-performance graphene oxide nanofiltration membrane with continuous nanochannels prepared by the in situ oxidation of MXene, J. Mater. Chem. A 7 (11) (2019) 6475-6481. [51] F.K. Wang, Z.Y. Wang, S.D. Wang, X.X. Meng, Y. Jin, N.T. Yang, J. Sunarso, S.M. Liu, Mechanically intensified and stabilized MXene membranes via the combination of graphene oxide for highly efficient osmotic power production, J. Membr. Sci. 647 (2022) 120280. [52] X. Zhao, Y.A. Che, Y.H. Mo, W.Q. Huang, C. Wang, Fabrication of PEI modified GO/MXene composite membrane and its application in removing metal cations from water, J. Membr. Sci. 640 (2021) 119847. [53] D. Cohen-Tanugi, J.C. Grossman, Water desalination across nanoporous graphene, Nano Lett. 12 (7) (2012) 3602-3608. [54] P. Pazouki, R.A. Stewart, E. Bertone, F. Helfer, N. Ghaffour, Life cycle cost of dilution desalination in off-grid locations: a study of water reuse integrated with seawater desalination technology, Desalination 491 (2020) 114584. [55] K.M. Gupta, J. Liu, J.W. Jiang, A molecular simulation protocol for membrane pervaporation, J. Membr. Sci. 572 (2019) 676-682. [56] W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc. 118 (45) (1996) 11225-11236. [57] W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, Comparison of simple potential functions for simulating liquid water, 79 (2) (1983) 926-935. [58] Y.C. Liu, Z.W. Cheng, M.R. Song, L.Z. Jiang, G. Fu, L. Liu, J.Y. Li, Molecular dynamics simulation-directed rational design of nanoporous graphitic carbon nitride membranes for water desalination, J. Membr. Sci. 620 (2021) 118869. [59] C. Chen, F. Huang, L.J. Jia, L. Zhang, E.Y. Chen, L.J. Liang, Z. Kong, X.P. Wang, W. Zhang, J.W. Shen, Molecular insights into desalination performance of lamellar graphene membranes: Significant of hydrophobicity and interlayer spacing, J. Mol. Liq. 333 (2021) 116024. [60] J.H. Yao, B. Ma, J. Zhang, C. Chen, L. Zhang, X.P. Wang, W. Zhang, L.J. Liang, E.Y. Chen, Understanding the desalination performance of seawater passing through the lamellar BN membranes: Effect of interlayer spacing and concentration, J. Mol. Liq. 376 (2023) 121356. [61] M.J. Abraham, T. Murtola, R. Schulz, S. Pall, J.C. Smith, B. Hess, E. Lindahl, GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX 1 (2015) 19-25. [62] G. Bussi, D. Donadio, M. Parrinello, Canonical sampling through velocity rescaling, J Chem Phys 126 (1) (2007) 014101. [63] T. Darden, D. York, L. Pedersen, Particle mesh Ewald: an N?log(N) method for Ewald sums in large systems, 98 (12) (1993) 10089-10092. [64] U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys. 103 (19) (1995) 8577-8593. [65] W. Humphrey, A. Dalke, K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graph. 14 (1) (1996) 33-38. [66] K.M. Kang, D.W. Kim, C.E. Ren, K.M. Cho, S.J. Kim, J.H. Choi, Y.T. Nam, Y. Gogotsi, H.T. Jung, Selective molecular separation on Ti3C2Tx-graphene oxide membranes during pressure-driven filtration: comparison with graphene oxide and MXenes, ACS Appl. Mater. Interfaces 9 (51) (2017) 44687-44694. [67] S.W. Liu, S. Keten, R.M. Lueptow, Effect of molecular dynamics water models on flux, diffusivity, and ion dynamics for polyamide membrane simulations, J. Membr. Sci. 678 (2023) 121630. [68] J.H. Wang, Self-diffusion coefficients of water, J. Phys. Chem. 69 (12) (1965) 4412. [69] K.T. Gillen, D.C. Douglass, M.J.R. Hoch, Self-diffusion in liquid water to-31℃, J. Chem. Phys. 57 (12) (1972) 5117-5119. [70] R. Mills, Self-diffusion in normal and heavy water in the range 1-45.deg, J. Phys. Chem. 77 (5) (1973) 685-688. [71] H.W. Dai, Z.J. Xu, X.N. Yang, Water permeation and ion rejection in layer-by-layer stacked graphene oxide nanochannels: a molecular dynamics simulation, J. Phys. Chem. C 120 (39) (2016) 22585-22596. [72] G. Algara-Siller, O. Lehtinen, F.C. Wang, R.R. Nair, U. Kaiser, H.A. Wu, A.K. Geim, I.V. Grigorieva, Square ice in graphene nanocapillaries, Nature 519 (7544) (2015) 443-445. [73] A.K. Giri, F. Teixeira, M.N.D.S. Cordeiro, Salt separation from water using graphene oxide nanochannels: a molecular dynamics simulation study, Desalination 460 (2019) 1-14. [74] Q. Tan, Y. Fan, Z.L. Song, J.L. Chen, L. Chen, Effects of interlayer spacing and oxidation degree of graphene oxide nanosheets on water permeation: a molecular dynamics study, J. Mol. Model. 28 (3) (2022) 57. [75] J. Zhou, X.H. Lu, Y.R. Wang, J. Shi, Molecular dynamics study on ionic hydration, Fluid Phase Equilib. 194 (2002) 257-270. |