[1] I. Edeh, Biodiesel production as a renewable resource for the potential displacement of the petroleum diesel, Biorefinery Concepts, Energy and Products, IntechOpen 2020. [2] A. Oumer, M. Hasan, A.T. Baheta, R. Mamat, A. Abdullah, Bio-based liquid fuels as a source of renewable energy: a review, Renew. Sustain. Energy Rev. 88 (2018) 82-98. [3] A.A. Babadi, S. Rahmati, R. Fakhlaei, B. Barati, S. Wang, W. Doherty, K.K. Ostrikov, Emerging technologies for biodiesel production: processes, challenges, and opportunities, Biomass Bioenergy 163 (2022) 106521. [4] A. Baena, A. Orjuela, S.K. Rakshit, J.H. Clark, Enzymatic hydrolysis of waste fats, oils and greases (FOGs): status, prospective, and process intensification alternatives, Chem. Eng. Process. Process Intensif. 175 (2022) 108930. [5] D.G. Filho, A.G. Silva, C.Z. Guidini, Lipases: sources, immobilization methods, and industrial applications, Appl. Microbiol. Biotechnol. 103 (2019) 7399-7423. [6] M. Mohtashami, J. Fooladi, A. Haddad-Mashadrizeh, M.R. Housaindokht, H. Monhemi, Molecular mechanism of enzyme tolerance against organic solvents: insights from molecular dynamics simulation, Int. J. Biol. Macromol. 122 (2019) 914-923. [7] V. Stepankova, S. Bidmanova, T. Koudelakova, Z. Prokop, R. Chaloupkova, J. Damborsky, Strategies for stabilization of enzymes in organic solvents, ACS Catal. 3(12) (2013) 2823-2836. [8] A.L. Serdakowski, J.S. Dordick, Enzyme activation for organic solvents made easy, Trends Biotechnol. 26(1) (2008) 48-54. [9] J.H. Yoon, D. Mckenzie, A comparison of the activities of three β-galactosidases in aqueous-organic solvent mixtures, Enzym. Microb. Technol. 36(4) (2005) 439-446. [10] U. Rashid, F. Anwar, B.R. Moser, S. Ashraf, Production of sunflower oil methyl esters by optimized alkali-catalyzed methanolysis, Biomass Bioenergy 32(12) (2008) 1202-1205. [11] Z. Helwani, M. Othman, N. Aziz, J. Kim, d.W. Fernando, Solid heterogeneous catalysts for transesterification of triglycerides with methanol: a review, Appl. Catal. Gen. 363(1-2) (2009) 1-10. [12] C. Santambrogio, F. Sasso, A. Natalello, S. Brocca, R. Grandori, S.M. Doglia, M. Lotti, Effects of methanol on a methanol-tolerant bacterial lipase, Appl. Microbiol. Biotechnol. 97 (2013) 8609-8618. [13] K. Nie, F. Xie, F. Wang, T. Tan, Lipase catalyzed methanolysis to produce biodiesel: optimization of the biodiesel production, J. Mol. Catal. B Enzym. 43(1-4) (2006) 142-147. [14] F. Al Basir, P.K. Roy, Study on enzyme inhibition in biodiesel synthesis: effect of stepwise addition of methanol and removal of glycerol, Energy, Ecol. Environ. 4(2) (2019) 75-84. [15] M. Lotti, J. Pleiss, F. Valero, P.J.B.j. Ferrer, Effects of methanol on lipases: molecular, kinetic and process issues in the production of biodiesel, Biotechnol. J. 10(1) (2015) 22-30. [16] M. Lotti, J. Pleiss, F. Valero, P.J.B.j. Ferrer, Enzymatic production of biodiesel: strategies to overcome methanol inactivation, Biotechnol. J. 13(5) (2018) 1700155. [17] L. Brondani, J. Ribeiro, F.J.R.e. Castilhos, A New Kinetic Model for Simultaneous Interesterification and Esterification Reactions from Methyl Acetate and Highly Acidic Oil, vol. 156 (2020) 579-590. [18] V. Makareviciene, K. Kazancev, E. Sendzikiene, M. Gumbyte, Application of simultaneous rapeseed oil extraction and interesterification with methyl formate using enzymatic catalyst, Renew. Energy 227 (2024) 120475. [19] S. Chuepeng, C. Komintarachat, Interesterification optimization of waste cooking oil and ethyl acetate over homogeneous catalyst for biofuel production with engine validation, Appl. Energy 232 (2018) 728-739. [20] D.-T. Tran, J.-S. Chang, D.-J.J.A.E. Lee, Recent insights into continuous-flow biodiesel production via catalytic and non-catalytic transesterification Processes, 185 (2017) 376-409. [21] I.C. Costa, I. Itabaiana Jr, M.C. Flores, A.C. Lourenco, S.G. Leite, L.S. de M. e Miranda, I.C. Leal, R.O. de Souza, Biocatalyzed acetins production under continuous-flow conditions: valorization of glycerol derived from biodiesel industry, Journal of Flow Chemistry 3(2) (2013) 41-45. [22] C.-H.C. Zhou, J.N. Beltramini, Y.-X. Fan, G.M. Lu, Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals, Chem. Soc. Rev. 37(3) (2008) 527-549. [23] P. Mukhopadhyay, R. Chakraborty, S. Singh, Triacetin additive in biodiesel to reduce air pollution: a review, Environ. Chem. Lett. 20(2) (2022) 1193-1224. [24] A.O. Esan, A.D. Adeyemi, S. Ganesan, A review on the recent application of dimethyl carbonate in sustainable biodiesel production, J. Clean. Prod. 257 (2020) 120561. [25] M. Sponchioni, S. Altinok, Poly (methyl methacrylate): market trends and recycling, Adv. Chem. Eng., Elsevier 2022, pp. 269-287. [26] M.J.D. Mahboub, J.-L. Dubois, F. Cavani, M. Rostamizadeh, G.S. Patience, Catalysis for the synthesis of methacrylic acid and methyl methacrylate, Chem. Soc. Rev. 47(20) (2018) 7703-7738. [27] T. Akbas, U. Beker, F. Guner, A. Erciyes, Y. Yagci, Drying and semidrying oil macromonomers. III. Styrenation of sunflower and linseed oils, J. Appl. Polym. Sci. 88(10) (2003) 2373-2376. [28] G. Capiel, E. Hernandez, N.E. Marcovich, M.A. Mosiewicki, Stress relaxation behavior of weldable crosslinked polymers based on methacrylated oleic and lauric acids, Eur. Polym. J. 132 (2020) 109740. [29] A. Campanella, M. Zhan, P. Watt, A.T. Grous, C. Shen, R.P. Wool, Triglyceride-based thermosetting resins with different reactive diluents and fiber reinforced composite applications, Composites Part A: Applied Science Manufacturing 72 (2015) 192-199. [30] J.J. La Scala, J.A. Orlicki, R. Jain, C.A. Ulven, G.R. Palmese, U.K. Vaidya, J.M. Sands, Emission modeling of styrene from vinyl ester resins with low hazardous air pollutant contents, Clean Technol. Environ. Policy 11 (2009) 283-292. [31] G. Capiel, N.E. Marcovich, M.A. Mosiewicki, From the synthesis and characterization of methacrylated fatty acid based precursors to shape memory polymers, Polym. Int. 68(3) (2019) 546-554. [32] G. Capiel, N.E. Marcovich, M.A. Mosiewicki, Shape memory polymer networks based on methacrylated fatty acids, Eur. Polym. J. 116 (2019) 321-329. [33] J.J. La Scala, J.M. Sands, J.A. Orlicki, E.J. Robinette, G.R. Palmese, Fatty acid-based monomers as styrene replacements for liquid molding resins, Polymer 45(22) (2004) 7729-7737. [34] Y. Lv, S. Sun, J.J.A.o. Liu, Biodiesel production catalyzed by a methanol-tolerant lipase A from Candida Antarctica in the presence of excess water, ACS Omega 4(22) (2019) 20064-20071. [35] T. Tan, K. Nie, F. Wang, Production of biodiesel by immobilized Candida sp. lipase at high water content, Appl. Biochem. Biotechnol. 128 (2006) 109-116. [36] X.-G. Gaoa, S.-G. Cao, K.-C. Zhang, Production, properties and application to nonaqueous enzymatic catalysis of lipase from a newly isolated Pseudomonas strain, Enzym. Microb. Technol. 27(1-2) (2000) 74-82. [37] M. Noel, D. Combes, Effects of temperature and pressure on Rhizomucor miehei lipase stability, J. Biotechnol. 102(1) (2003) 23-32. [38] D.M. Cetina, G.I. Giraldo, C.E. Orrego, Application of response surface design to solvent, temperature and lipase selection for optimal monoglyceride production, J. Mol. Catal. B Enzym. 72(1-2) (2011) 13-19. [39] M.M. Soumanou, M. Perignon, P. Villeneuve, Lipase-catalyzed interesterification reactions for human milk fat substitutes production: a review, Eur. J. Lipid Sci. Technol. 115(3) (2013) 270-285. [40] M. Hajar, S. Shokrollahzadeh, F. Vahabzadeh, A. Monazzami, Solvent-free methanolysis of canola oil in a packed-bed reactor with use of Novozym 435 plus loofa, Enzym. Microb. Technol. 45(3) (2009) 188-194. [41] N. Dizge, B. Keskinler, A. Tanriseven, Biodiesel production from canola oil by using lipase immobilized onto hydrophobic microporous styrene-divinylbenzene copolymer, Biochem. Eng. J. 44(2-3) (2009) 220-225. [42] S.-M. Jung, Y.-C. Park, K. Park, Effects of environmental conditions and methanol feeding strategy on lipase-mediated biodiesel production using soybean oil, Biotechnol. Bioproc. Eng. 15 (2010) 614-619. [43] R.C. Rodrigues, B.C. Pessela, G. Volpato, R. Fernandez-Lafuente, J.M. Guisan, M.A. Ayub, Two step ethanolysis: a simple and efficient way to improve the enzymatic biodiesel synthesis catalyzed by an immobilized-stabilized lipase from Thermomyces lanuginosus, Process Biochem. 45(8) (2010) 1268-1273. |