[1] X.F. Li, G.H. Chen, P. Amyotte, M. Alauddin, F. Khan, Modeling and analysis of domino effect in petrochemical storage tank farms under the synergistic effect of explosion and fire, Process. Saf. Environ. Prot. 176 (2023) 706-715. [2] C. Chen, G. Reniers, Chemical industry in China: The current status, safety problems, and pathways for future sustainable development, Saf. Sci. 128 (2020) 104741. [3] C.K. Li, D.F. Zhao, S.J. Mu, W.H. Zhang, N. Shi, L.N. Li, Fault diagnosis for distillation process based on CNN-DAE, Chin. J. Chem. Eng. 27 (3) (2019) 598-604. [4] X.T. Bi, R.S. Qin, D.Y. Wu, S.D. Zheng, J.S. Zhao, One step forward for smart chemical process fault detection and diagnosis, Comput. Chem. Eng. 164 (2022) 107884. [5] S.W. Xiong, L. Zhou, Y.Y. Dai, X. Ji, Attention-based long short-term memory fully convolutional network for chemical process fault diagnosis, Chin. J. Chem. Eng. 56 (2023) 1-14. [6] F. Khan, P. Amyotte, S. Adedigba, Process safety concerns in process system digitalization, Educ. Chem. Eng. 34 (2021) 33-46. [7] R.S. Qin, J.S. Zhao, Adaptive multiscale convolutional neural network model for chemical process fault diagnosis, Chin. J. Chem. Eng. 50 (2022) 398-411. [8] R. Arunthavanathan, F. Khan, S. Ahmed, S. Imtiaz, An analysis of process fault diagnosis methods from safety perspectives, Comput. Chem. Eng. 145 (2021) 107197. [9] Y. Tao, H.B. Shi, B. Song, S. Tan, A distributed adaptive monitoring method for performance indicator in large-scale dynamic process, IEEE Trans. Ind. Inform. 19 (10) (2023) 10425-10433. [10] J.Y. Luo, X.Y. Kong, C.H. Hu, H.Z. Li, Key-performance-indicators-related fault subspace extraction for the reconstruction-based fault diagnosis, Measurement 186 (2021) 110119. [11] G. Gravanis, I. Dragogias, K. Papakiriakos, C. Ziogou, K. Diamantaras, Fault detection and diagnosis for non-linear processes empowered by dynamic neural networks, Comput. Chem. Eng. 156 (2022) 107531. [12] P. Agarwal, M. Aghaee, M. Tamer, H. Budman, A novel unsupervised approach for batch process monitoring using deep learning, Comput. Chem. Eng. 159 (2022) 107694. [13] M.T.H. Kaib, A. Kouadri, M.F. Harkat, A. Bensmail, M. Mansouri, Improving kernel PCA-based algorithm for fault detection in nonlinear industrial process through fractal dimension, Process. Saf. Environ. Prot. 179 (2023) 525-536. [14] K.X. Peng, Y.X. Guo, Fault detection and quantitative assessment method for process industry based on feature fusion, Measurement 197 (2022) 111267. [15] X. Gao, J. Hou, An improved SVM integrated GS-PCA fault diagnosis approach of Tennessee Eastman process, Neurocomputing 174 (2016) 906-911. [16] M.T. Amin, S. Imtiaz, F. Khan, Process system fault detection and diagnosis using a hybrid technique, Chem. Eng. Sci. 189 (2018) 191-211. [17] M.T. Amin, F. Khan, S. Ahmed, S. Imtiaz, A data-driven Bayesian network learning method for process fault diagnosis, Process. Saf. Environ. Prot. 150 (2021) 110-122. [18] N. Liu, M.G. Hu, J. Wang, Y.J. Ren, W.D. Tian, Fault detection and diagnosis using Bayesian network model combining mechanism correlation analysis and process data: Application to unmonitored root cause variables type faults, Process. Saf. Environ. Prot. 164 (2022) 15-29. [19] A. Urtubia, R. Leon, M. Vargas, Identification of chemical markers to detect abnormal wine fermentation using support vector machines, Comput. Chem. Eng. 145 (2021) 107158. [20] W.K. Sun, A.R.C. Paiva, P. Xu, A. Sundaram, R.D. Braatz, Fault detection and identification using Bayesian recurrent neural networks, Comput. Chem. Eng. 141 (2020) 106991. [21] K. Hazama, M. Kano, Covariance-based locally weighted partial least squares for high-performance adaptive modeling, Chemom. Intell. Lab. Syst. 146 (2015) 55-62. [22] A.A.K. Farizhandi, H. Zhao, R. Lau, Modeling the change in particle size distribution in a gas-solid fluidized bed due to particle attrition using a hybrid artificial neural network-genetic algorithm approach, Chem. Eng. Sci. 155 (2016) 210-220. [23] M. Gohari, A.M. Eydi, Modelling of shaft unbalance: Modelling a multi discs rotor using K-Nearest Neighbor and Decision Tree Algorithms, Measurement 151 (2020) 107253. [24] J.J. Jiang, L.R. Bu, X.Q. Wang, C.Y. Li, Z.B. Sun, H. Yan, B. Hua, F.J. Duan, J. Yang, Clicks classification of sperm whale and long-finned pilot whale based on continuous wavelet transform and artificial neural network, Appl. Acoust. 141 (2018) 26-34. [25] M.C. Thomas, W.B. Zhu, J.A. Romagnoli, Data mining and clustering in chemical process databases for monitoring and knowledge discovery, J. Process. Contr. 67 (2018) 160-175. [26] M. Golyadkin, V. Pozdnyakov, L. Zhukov, I. Makarov, SensorSCAN: Self-supervised learning and deep clustering for fault diagnosis in chemical processes, Artif. Intell. 324 (2023) 104012. [27] Z.P. Zhang, J.S. Zhao, A deep belief network based fault diagnosis model for complex chemical processes, Comput. Chem. Eng. 107 (2017) 395-407. [28] H. Wu, J.S. Zhao, Deep convolutional neural network model based chemical process fault diagnosis, Comput. Chem. Eng. 115 (2018) 185-197. [29] M.H. Zhao, S.S. Zhong, X.Y. Fu, B.P. Tang, M. Pecht, Deep residual shrinkage networks for fault diagnosis, IEEE Trans. Ind. Inform. 16 (7) (2020) 4681-4690. [30] Z.C. Li, L. Tian, Q.C. Jiang, X.F. Yan, Fault diagnostic method based on deep learning and multimodel feature fusion for complex industrial processes, Ind. Eng. Chem. Res. 59 (40) (2020) 18061-18069. [31] Y.M. Han, N. Ding, Z.Q. Geng, Z. Wang, C. Chu, An optimized long short-term memory network based fault diagnosis model for chemical processes, J. Process. Contr. 92 (2020) 161-168. [32] Z. Long, X.F. Zhang, L. Zhang, G.J. Qin, S.D. Huang, D.Y. Song, H.D. Shao, G.P. Wu, Motor fault diagnosis using attention mechanism and improved adaboost driven by multi-sensor information, Measurement 170 (2021) 108718. [33] R. Arunthavanathan, F. Khan, S. Ahmed, S. Imtiaz, A deep learning model for process fault prognosis, Process. Saf. Environ. Prot. 154 (2021) 467-479. [34] R.R.A. Harinarayan, S.M. Shalinie, XFDDC: eXplainable Fault Detection Diagnosis and Correction framework for chemical process systems. Process Safety and Environmental Protection, 165 (2022) 463-474. [35] Y.D. He, Z. Yang, D. Wang, C.D. Gou, C.K. Li, Y.A. Guo, A fault diagnosis method for complex chemical process based on multi-model fusion, Chem. Eng. Res. Des. 184 (2022) 662-677. [36] S. Mirzaei, K.Y. Chiu, J.L. Kang, Identification of unknown faults in chemical processes using few-shot learning, Measurement 207 (2023) 112393. [37] Q.C. Tao, B.R. Xin, Y.F. Zhang, H.P. Jin, Q. Li, Z.D. Dai, Y.Y. Dai, A novel triage-based fault diagnosis method for chemical process, Process. Saf. Environ. Prot. 183 (2024) 1102-1116. [38] C.T. Wang, H.B. Shi, B. Song, Y. Tao, Hierarchical multihead self-attention for time-series-based fault diagnosis, Chin. J. Chem. Eng. 70 (2024) 104-117. [39] Z.K. Liu, Y.H. Liu, D.W. Zhang, B.P. Cai, C. Zheng, Fault diagnosis for a solar assisted heat pump system under incomplete data and expert knowledge, Energy 87 (2015) 41-48. [40] M. Askarian, G. Escudero, M. Graells, R. Zarghami, F. Jalali-Farahani, N. Mostoufi, Fault diagnosis of chemical processes with incomplete observations: a comparative study, Comput. Chem. Eng. 84 (2016) 104-116. [41] C. Guo, W.K. Hu, F. Yang, D.X. Huang, Deep learning technique for process fault detection and diagnosis in the presence of incomplete data, Chin. J. Chem. Eng. 28 (9) (2020) 2358-2367. [42] X. Yu, D.J. Zhan, L. Liu, H.W. Lv, L.W. Xu, J.W. Du, A privacy-preserving cross-domain healthcare wearables recommendation algorithm based on domain-dependent and domain-independent feature fusion, IEEE J. Biomed. Health Inform. 26 (5) (2022) 1928-1936. [43] X. Yu, F. Jiang, J.W. Du, D.W. Gong, A cross-domain collaborative filtering algorithm with expanding user and item features via the latent factor space of auxiliary domains, Pattern Recognit. 94 (2019) 96-109. [44] Z.Y. Yin, J. Hou, Recent advances on SVM based fault diagnosis and process monitoring in complicated industrial processes, Neurocomputing 174 (2016) 643-650. [45] C. Jing, J. Hou, SVM and PCA based fault classification approaches for complicated industrial process, Neurocomputing 167 (2015) 636-642. [46] J.Y. Tong, S.Y. Tang, Y. Wu, H.Y. Pan, J.D. Zheng, A fault diagnosis method of rolling bearing based on improved deep residual shrinkage networks, Measurement 206 (2023) 112282. [47] H. Yin, H. Xu, W.W. Fan, F. Sun, Fault diagnosis of pressure relief valve based on improved deep Residual Shrinking Network, Measurement 224 (2024) 113752. [48] Y.Z. Tong, P. Wu, J.J. He, X.J. Zhang, X.L. Zhao, Bearing fault diagnosis by combining a deep residual shrinkage network and bidirectional LSTM, Meas. Sci. Technol. 33 (3) (2022) 034001. [49] P. Xu, J.C. Liu, L.L. Shang, W.L. Zhang, Industrial process fault detection and diagnosis framework based on enhanced supervised kernel entropy component analysis, Measurement 196 (2022) 111181. [50] J.J. Luo, Z.H. Jin, H.P. Jin, Q. Li, X. Ji, Y.Y. Dai, Causal temporal graph attention network for fault diagnosis of chemical processes, Chin. J. Chem. Eng. 70 (2024) 20-32. [51] H. Zhao, M.G. Ierapetritou, G. Rong, Production planning optimization of an ethylene plant considering process operation and energy utilization, Comput. Chem. Eng. 87 (2016) 1-12. [52] D. Meng, C. Shao, L. Zhu, Two-level comprehensive energy-efficiency quantitative diagnosis scheme for ethylene-cracking furnace with multi-working-condition of fault and exception operation, Energy 239 (2022) 121835. |