[1] S.H. Yang, J.M. Chen, Air pollution prevention and pollution source identification of chemical industrial parks, Process. Saf. Environ. Prot. 159 (2022) 992-995. [2] Y.M. Shou, J.Y. Chen, X.X. Guo, J.P. Zhu, L. Ding, J. Ji, Y.F. Cheng, A dynamic individual risk management method considering spatial and temporal synergistic effect of toxic substance leakage and fire accidents, Process. Saf. Environ. Prot. 169 (2023) 238-251. [3] Z.Q. Chen, L. Ye, B. Dai, F. Wang, Feasibility analysis of a single-sensor-based approach for source identification of hazardous chemical releases, Chin. J. Chem. Eng. 27 (7) (2019) 1642-1650. [4] Y.S. Ling, C.F. Liu, Q. Shan, D.Q. Hei, X.J. Zhang, C. Shi, W.B. Jia, J. Wang, Inversion method for multiple nuclide source terms in nuclear accidents based on deep learning fusion model, Atmosphere 14 (1) (2023) 148. [5] C. Rhodes, C.J. Liu, P. Westoby, W.H. Chen, Autonomous search of an airborne release in urban environments using informed tree planning, Auton. Rob. 47 (1) (2023) 1-18. [6] H.Y. Jia, H. Kikumoto, Sensor configuration optimization based on the entropy of adjoint concentration distribution for stochastic source term estimation in urban environment, Sustain. Cities Soc. 79 (2022) 103726. [7] F.Y. Wang, X.Y. Zhou, H. Kikumoto, Improvement of optimization methods in indoor time-variant source parameters estimation combining unsteady adjoint equations and flow field information, Build. Environ. 226 (2022) 109710. [8] J.T. Cai, J.S. Wu, S.Q. Yuan, G. Reniers, Y.P. Bai, Risk-based optimization of emergency response systems for accidental gas leakage in utility tunnels, Reliab. Eng. Syst. Saf. 244 (2024) 109947. [9] N. Gunawardena, K.K. Leang, E. Pardyjak, Particle swarm optimization for source localization in realistic complex urban environments, Atmos. Environ. 262 (2021) 118636. [10] Q.L. He, L.J. Zhou, F. Zhang, D.J. Guan, X. Zhang, Efficient and accurate leakage points detection in gas pipeline using reinforcement learning-based optimization, IEEE Sens. J. 24 (17) (2024) 27640-27652. [11] S. Jang, J. Park, H.H. Lee, C.S. Jin, E.S. Kim, Comparative study on gradient-free optimization methods for inverse source-term estimation of radioactive dispersion from nuclear accidents, J. Hazard. Mater. 461 (2024) 132519. [12] F.Y. Wang, X.Y. Zhou, J. Huang, H.D. Wang, H. Kikumoto, C.Y. Deng, Natural gas leakage estimation in underground utility tunnels using Bayesian inference based on flow fields with gas jet disturbance, Process. Saf. Environ. Prot. 165 (2022) 532-544. [13] H.L. Zhang, B. Li, J. Shang, W.W. Wang, F.Y. Zhao, Source term estimation for continuous plume dispersion in Fusion Field Trial-07: Bayesian inference probability adjoint inverse method, Sci. Total Environ. 915 (2024) 169802. [14] J.P. Zhao, J.L. Li, Y.L. Bai, W.J. Zhou, Y.H. Zhang, J.J. Wei, Research on leakage detection technology of natural gas pipeline based on modified Gaussian plume model and Markov chain Monte Carlo method, Process. Saf. Environ. Prot. 182 (2024) 314-326. [15] D.L. Ma, Z.X. Zhang, Contaminant dispersion prediction and source estimation with integrated Gaussian-machine learning network model for point source emission in atmosphere, J. Hazard. Mater. 311 (2016) 237-245. [16] D.L. Ma, J.M. Gao, Z.X. Zhang, H. Zhao, Identifying atmospheric pollutant sources using a machine learning dispersion model and Markov chain Monte Carlo methods, Stoch. Environ. Res. Risk Assess. 35 (2) (2021) 271-286. [17] D.L. Ma, J.Q. Deng, Z.X. Zhang, Comparison and improvements of optimization methods for gas emission source identification, Atmos. Environ. 81 (2013) 188-198. [18] J.L. Wang, B. Wang, J.J. Liu, W. Cheng, J.P. Zhang, An inverse method to estimate the source term of atmospheric pollutant releases, Atmos. Environ. 260 (2021) 118554. [19] W.J. Cui, B. Cao, Q.X. Fan, J. Fan, Y.X. Chen, Source term inversion of nuclear accident based on deep feedforward neural network, Ann. Nucl. Energy 175 (2022) 109257. [20] S. Feintuch, J. Tabrikian, I. Bilik, H. Permuter, Neural-network-based DOA estimation in the presence of non-Gaussian interference, IEEE Trans. Aerosp. Electron. Syst. 60 (1) (2024) 119-132. [21] Y. Su, J.F. Li, B. Yu, Y.L. Zhao, J. Yao, Fast and accurate prediction of failure pressure of oil and gas defective pipelines using the deep learning model, Reliab. Eng. Syst. Saf. 216 (2021) 108016. [22] S.K. Chen, W.L. Du, X. Peng, C.X. Cao, X.J. Wang, B. Wang, Peripheric sensors-based leaking source tracking in a chemical industrial park with complex obstacles, J. Loss Prev. Process. Ind. 78 (2022) 104828. [23] J.J. Xu, W.L. Du, Q.Y. Xu, J.K. Dong, B. Wang, Federated learning based atmospheric source term estimation in urban environments, Comput. Chem. Eng. 155 (2021) 107505. [24] Q.Y. Xu, W.L. Du, J.J. Xu, J.K. Dong, Neural network-based source tracking of chemical leaks with obstacles, Chin. J. Chem. Eng. 33 (2021) 211-220. [25] X.Q. Zhang, J.H. Shi, M. Yang, X.Y. Huang, A.S. Usmani, G.M. Chen, J.M. Fu, J.W. Huang, J.J. Li, Real-time pipeline leak detection and localization using an attention-based LSTM approach, Process. Saf. Environ. Prot. 174 (2023) 460-472. [26] F.M.M. Sousa, A.Z. Selvaggio, F.V. Silva, S.S.V. Vianna, Leakage source localisation employing 3D-CFD simulations and gated recurrent units, Process. Saf. Environ. Prot. 178 (2023) 540-546. [27] A. Li, Z.Q. Lang, C.T. Ni, H. Tian, B. Wang, C.X. Cao, W.L. Du, F. Qian, Deep learning-based source term estimation of hydrogen leakages from a hydrogen fueled gas turbine, Int. J. Hydrog. Energy 86 (2024) 875-889. [28] A.Z. Selvaggio, F.M.M. Sousa, F.V. da Silva, S.S.V. Vianna, Application of long short-term memory recurrent neural networks for localisation of leak source using 3D computational fluid dynamics, Process. Saf. Environ. Prot. 159 (2022) 757-767. [29] Z.Q. Lang, B. Wang, Y.T. Wang, C.X. Cao, X. Peng, W.L. Du, F. Qian, A novel multi-sensor data-driven approach to source term estimation of hazardous gas leakages in the chemical industry, Processes 10 (8) (2022) 1633. [30] W.X. Qian, H. Gao, Y.Y. Lu, S. Lyu, L. Zhuang, S.T. Hu, L.X. Wang, J. Liu, Optimizing measurement schemes to improve indoor airflow and temperature CFD-EnKF joint simulation, Build. Environ. 248 (2024) 111070. [31] J.S. Wu, J.T. Cai, S.Q. Yuan, X.L. Zhang, G. Reniers, CFD and EnKF coupling estimation of LNG leakage and dispersion, Saf. Sci. 139 (2021) 105263. [32] J.B. Wang, J.S. Zhao, X.H. Lei, H. Wang, An effective method for point pollution source identification in rivers with performance-improved ensemble Kalman filter, J. Hydrol. 577 (2019) 123991. [33] J.T. Cai, J.S. Wu, S.Q. Yuan, D.S. Kong, X.L. Zhang, Prediction of gas leakage and dispersion in utility tunnels based on CFD-EnKF coupling model: a 3D full-scale application, Sustain. Cities Soc. 80 (2022) 103789. [34] J.S. Wu, S.Q. Yuan, C. Zhang, X.L. Zhang, Numerical estimation of gas release and dispersion in coal mine using Ensemble Kalman Filter, J. Loss Prev. Process. Ind. 56 (2018) 57-67. [35] S.Q. Yuan, J.S. Wu, X.L. Zhang, W.Y. Liu, EnKF-based estimation of natural gas release and dispersion in an underground tunnel, J. Loss Prev. Process. Ind. 62 (2019) 103931. [36] X.Y. Zhao, K. Cheng, W. Zhou, Y. Cao, S.H. Yang, J.M. Chen, Source term estimation with deficient sensors: a temporal augment approach, Process. Saf. Environ. Prot. 157 (2022) 131-139. [37] X.R. Liu, F. Li, H. Cai, K. Zhang, J.X. Liu, J.H. Xu, X.T. Li, Dynamical source term estimation in a multi-compartment building under time-varying airflow, Build. Environ. 160 (2019) 106162. [38] W. Zhou, X.Y. Zhao, K. Cheng, Y. Cao, S.H. Yang, J.M. Chen, Source term estimation with deficient sensors: Error analysis and mobile station route design, Process. Saf. Environ. Prot. 154 (2021) 97-103. [39] Y.H. Xu, X.W. Dong, H.Y. Luo, S. Fang, Robust source reconstruction of atmospheric radionuclides from observations of different sparsity with spatial preselection and non-smooth constraints, J. Hazard. Mater. 486 (2025) 136919. [40] S.B. Tang, F. Li, Y.H. Han, Z.B. Feng, A lightweight adjoint method for gaseous pollution source term estimation in urban environments, Build. Simul. 18 (4) (2025) 937-955. [41] T.F. Zhang, S. Yin, S.G. Wang, An inverse method based on CFD to quantify the temporal release rate of a continuously released pollutant source, Atmos. Environ. 77 (2013) 62-77. [42] J.Y. Zhuang, F. Li, X.R. Liu, H. Cai, L.H. Feng, X.T. Li, An experiment-based impulse response method to characterize airborne pollutant sources in a scaled multi-zone building, Atmos. Environ. 251 (2021) 118272. [43] C.T. Ni, Z.Q. Lang, B. Wang, A. Li, C.X. Cao, W.L. Du, F. Qian, Data-driven source term estimation of hazardous gas leakages under variable meteorological conditions, J. Loss Prev. Process. Ind. 94 (2025) 105506. [44] A.Y. Shikhovtsev, E.A. Kopylov, Structure of atmospheric turbulence, Atmosphere 13 (7) (2022) 1107. [45] F.Z. Wang, W.H. Du, Q. Yuan, D.S. Liu, S. Feng, A survey of structure of atmospheric turbulence in atmosphere and related turbulent effects, Atmosphere 12 (12) (2021) 1608. [46] A. Visscher, Air dispersion modeling: Foundations and applications, John Wiley & Sons, Inc., Hoboken, 2014. [47] W. Zhang, J.P. Zhao, P. Quan, J.W. Wang, X.Y. Meng, Q. Li, Prediction of influent wastewater quality based on wavelet transform and residual LSTM, Appl. Soft Comput. 148 (2023) 110858. [48] K. McGrattan, S. Hostikka, J. Floyd, et al., Fire dynamics simulator: User’s guide, National Institute of Standards and Technology, U.S. Department of Commerce, 2013. [49] Y. Mouilleau, A. Champassith, CFD simulations of atmospheric gas dispersion using the Fire Dynamics Simulator (FDS), J. Loss Prev. Process. Ind. 22 (3) (2009) 316-323. [50] Y. Kitamura, Improving a turbulence scheme for the terra incognita in a dry convective boundary layer, J. Meteor. Soc. Jpn. Ser II 94 (6) (2016) 491-506. [51] J.K. Dong, W.L. Du, B. Wang, C.X. Cao, S.K. Chen, Q.Y. Xu, Impact analysis of multi-sensor layout on the source term estimation of hazardous gas leakage, J. Loss Prev. Process. Ind. 73 (2021) 104579. [52] J.K. Dong, B. Wang, X.J. Wang, C.X. Cao, S.K. Chen, W.L. Du, Optimization of sensor deployment sequences for hazardous gas leakage monitoring and source term estimation, Chin. J. Chem. Eng. 56 (2023) 169-179. [53] S.R. Hanna, G.A. Briggs, R.P.J. Hosker, Handbook on atmospheric diffusion, U.S. Department of Energy, 1982. [54] K. Cheng, X.Y. Zhao, W. Zhou, Y. Cao, S.H. Yang, J.M. Chen, Source term estimation with deficient sensors: Traceability and an equivalent source approach, Process. Saf. Environ. Prot. 152 (2021) 131-139. [55] J.F. Cai, E.J. Candèes, Z.W. Shen, A singular value thresholding algorithm for matrix completion, SIAM J. Optim. 20 (4)(2010)1956-1982. [56] N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in evolution strategies, Evol. Comput. 9 (2) (2001) 159-195. [57] M.B. Zhao, T. Huang, C.H. Liu, M.J. Chen, S. Ji, D.M. Christopher, X.F. Li, Leak localization using distributed sensors and machine learning for hydrogen releases from a fuel cell vehicle in a parking garage, Int. J. Hydrog. Energy 46 (1) (2021) 1420-1433. [58] B. Wang, F. Qian, W.M. Zhong, Wind field reconstruction for the dispersion modeling of accidental chemical spills on complex geometry, Chin. J. Chem. Eng. 27 (11) (2019) 2712-2724. [59] J.C. Chang, S.R. Hanna, Air quality model performance evaluation, Meteor. Atmos. Phys. 87 (1) (2004) 167-196. [60] M.L. Barad, Project Prairie Grass, a Field Program in Diffusion, Tach. Rep. Geophysical Research Paper, No. 59, Report AFCRC-TR-58-235, Air Force Cambridge Research Center, pp 218. [61] G. Cervone, P. Franzese, Non-Darwinian evolution for the source detection of atmospheric releases, Atmos. Environ. 45 (26) (2011) 4497-4506. [62] S.S. Mao, J.L. Lang, T. Chen, S.Y. Cheng, J.X. Cui, Z.Y. Shen, F. Hu, Comparison of the impacts of empirical power-law dispersion schemes on simulations of pollutant dispersion during different atmospheric conditions, Atmos. Environ. 224 (2020) 117317. |