1 Storn, R., Price, K., “Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces”, Technical Report TR-95-012, International Computer Science Institute, Berkeley, CA, USA (1995). 2 Ingber, L., “Simulated annealing:Practice versus theory”, Math. Comput. Model., 18, 29-57 (1993). 3 Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., Numerical Recipes in C, Cambridge University Press, UK (1992). 4 Muehlenbein, H., Schlierkamp, V., “Predictive models for the breeder genetic algorithm (I) Continuous parameter optimizations”, Evolut. Comput., 1, 25-49 (1993). 5 Voigt, H.M., “Soft genetic operators in evolutionary algorithms”, Lecture Notes in Computer Science, 899, 123-141 (1995). 6 Aluffi-Pentini, F., Parisi, V., Zirilli, F., “Global optimization and stochastic differential equations”, J. Optimiz. Theory Appl., 47, 1–16 (1985). 7 Vesterstrom, J., Thomsen, R., “A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems”, In:Proceedings of the Sixth Congress on Evolutionary Computation, IEEE Press, USA, 332-339 (2004). 8 Eberhart, R., Kennedy, J., “A new optimizer using particle swarm theory”, In:Proceedings of the Sixth International Symposium on Micromachine and Human Science, IEEE Press, Nagoya, Japan, 39-43 (1995). 9 Krink, T., Paterlini, S., Resti, A., “Using differential evolution to improve the accuracy of bank rating systems”, Comput. Stat. Data An., 52, 68-87 (2007). 10 Holland, J.H., Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Harbor (1975). 11 Brest, J., Bo kovi , B., Greiner, S., umer, V., Mau ec., M., “Performance comparison of self-adaptive and adaptive differential evolution algorithms”, Soft Comput., 11, 617-629 (2007). 12 Liu, J., Lampinen., J., “A fuzzy adaptive differential revolution algorithm”, In:Proceedings of the IEEE International Region 10 Conference on Computers, Communications, Control and Power Engineering, IEEE Press, Beijing, China, 606-611(2002). 13 Storn, R., “On the usage of differential evolution for function optimization”, In:Biennial Conference of North American Fuzzy Information Processing Society, IEEE Press, Berkeley, USA, 519–523 (1996). 14 Babu, B., Jehan, M., “Differential evolution for multi-objective optimization”, In:Proceedings of the IEEE Congress on Evolutionary Computation, IEEE Press, Canberra, Australia, 2696-2703 (2003). 15 Abbass., H., “The self-adaptive pareto differential evolution algorithm”, In:Proceedings of the IEEE Congress on Evolutionary Computation, IEEE Press, Hawaii, USA, 831-836 (2002). 16 Omran, M., Salman, A., Engelbrecht, A., “Self-adaptive differential evolution”, In:Proceedings of the International Conference on Computational Intelligence and Security, IEEE Press, Xi'an, China, 192-199 (2005). 17 Yuan, X.H., Zhang, Y., Wang, L., Yuan, Y.B., “An enhanced differential evolution algorithm for daily optimal hydro generation scheduling”, Comput. Math. Appl., 55, 2458-2468 (2008). 18 Nobakhti, A., Wang, H., “A simple self-adaptive differential evolution algorithm with application on the ALSTOM gasifier”, Appl. Soft Comput., 8, 350–370 (2008). 19 Eiben, A., Hinterding, R., Michalewicz, Z., “Parameter control in evolutionary algorithms”, IEEE T. Evolut. Comput., 3, 124-141 (1999). 20 Carlos, A.C.C., “Use of a self-adaptive penalty approach for engineering optimization problems”, Comput. Ind., 41, 113-127 (2000). 21 He, Q., Wang, L., “An effective co-evolutionary particle swarm optimization for constrained engineering design problems”, Eng. Appl. Artif. Intel., 20, 89-99 (2007). 22 Hu, F.Z., Wang, L., He, Q., “An effective co-evolutionary differential evolution for constrained optimization”, Appl. Math. Comput., 186, 340-356 (2007). 23 Storn, R., Price, K., “Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces”, J. Global Optim., 11, 341-359 (1997). 24 Agarwal, H., Stenger, H.G., Wu, S., Fan, Z., “Effects of H2O, SO2 and NO on homogeneous Hg oxidation by Cl2 ”, Energ. Fuel., 20, 1068-1075 (2006). 25 Agarwal, H., Romero, C.E., Stenger, H.G., “Comparing and interpreting laboratory results of Hg oxidation by a chlorine species”, Fuel Process. Technol., 88, 723-730 (2007). 26 Farmer, J.D., Packard, N.H., Perelson, A.S., “The immune system, adaptation, and machine learning”, Phys. D, 2, 187-204 (1986). 27 Wu, X.L., Lu, J.G., Sun, Y.X., “An improved differential evolution for optimization of chemical process”, Chin. J. Chem. Eng., 16, 228-234 (2008). 28 Jiao, L.C., Wang, L., “A novel genetic algorithm based on immunity”, IEEE T. Syst. Man Cy. A, 30, 552-561 (2000). 29 Zeng, C.W., Gu, T.L., “A novel immunity-growth genetic algorithm for traveling salesman problem”, In:Proceedings of IEEE Conference on Natural Computation, IEEE Press, Haikou, China, 394-398 (2007). 30 Xin, Y., Liu, Y., Lin, G.M., “Evolutionary programming made faster”, IEEE T. Evolut. Comput., 3, 82-102 (1999). 31 Krink, T., Filipi , B., Fogel, B., “Noisy optimization problems-A particular challenge for differential evolution?”, In:Proceedings of the IEEE Congress on Evolutionary Computation, IEEE Press, Portland, USA, 332-339 (2004). 32 Salman, A., Engelbrecht, A., Omran, M., “Empirical analysis of self-adaptive differential evolution”, Eur. J. Oper. Res., 83, 785–804 (2007). 33 Niksa, S., Helble, J.J., Fujiwara, N., “Kinetic modeling of homogeneous mercury oxidation:The importance of NO and H2O in predicting oxidation in coal-derived systems”, Environ. Sci. Technol., 35, 3701-3706 (2001). 34 Agarwal, H., Stenger, H.G., “Development of a predictive kinetic model for homogeneous Hg oxidation data”, Math. Comput. Model., 45, 109-125 (2007). |