1 Ramage, M.P., Liquid Transportation Fuels from Coal and Biomass:Technological Status, Costs, and Environmental Impacts, The National Academy Press, Washington, DC, USA (2009).2 Hayes, D.J., “An examination of biorefining processes, catalyst and challenges”, Catalysis Today, 145, 138-151 (2009).3 Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., Wallace, B., Montague, L., Slayton, A., Lukas, J., “Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover”, National Renewable Energy Laboratory Technical Report, NREL/TP-510-32438 (2002).4 Kang, L., Wang, W., Lee, Y.Y., “Bioconversion of kraft paper mill sludges to ethanol by SSF and SSCF”, Appl. Biochem. Biotechnol., 161, 53-66 (2010).5 Kadam, K.L., Rydholm, E.C., McMillan, J.D., “Development and validation of a kinetic model for enzymatic saccharification of lignocellulosic biomass”, Biotechnol. Prog., 20, 698-705 (2004).6 Krishnan, M.S., Ho, N.W.Y., Tsao, G.T., “Fermentation kinetics of ethanol production from glucose and xylose by recombinant Saccharomyces 1400(pLNH33)”, Appl. Biochem. Biotechnol., 78, 373-388 (1999).7 Sin, G., Meyer, A.S., Gernaey, K.V., “Assessing reliability of cellulose hydrolysis models to support bioefuel process design-identifiability and uncertainty analysis”, Comput. Chem. Eng., 34, 1385-1392 (2010).8 Hodge, D.B., Karim, M.N., Schell, D.J., McMillan, J.D., “Model-based fed-batch for high-solids enzymatic cellulose hydrolysis”, Appl. Biochem. Biotechnol., 152, 88-107 (2009).9 Morales-Rodriguez, R., Capron, M., Huusom, J.K., Sin, G., “Controlled fed-batch operation for improving cellulose hydrolysis in 2G bioethanol production”, Computer-Aided Chemical Engineering, 28, 1497-1502 (2010).10 Rosgaard, L., Pedersen, S., Langston, J., Akerhielm, D., Cherry, J.R., Meyer, A.S., “Evaluation of minimal Trichoderma reesei cellulase mixtures on differently pretreated barley straw substrate”, Biotechnol. Prog., 23, 1270-1276 (2007).11 SØrensen, H., Pedersen, S., Viks-Nielsen, A., Meyer, A.S., “Efficiencies of designed enzyme combinations in releasing xylose and arabinose from wheat arabinoxylan in an industrial ethanol fermentation residue”, Enzyme Microb. Technol., 36, 773-784 (2005).12 Bezerra, R.M.F., Dias, A.A., “Enzymatic kinetic of cellulose hydrolysis”, Appl. Biochem. Biotechnol., 126, 49-59 (2005).13 Ooshirna, H., Ishitani, Y., Har, Y., “Simultaneous saccharification and fermentation of cellulose:effect of ethanol on enzymatic saccharification of cellulose”, Biotechnol. Bioeng., 27, 389-397 (1985).14 Philippidis, G.P., Smith, T.K., Wyman, C.E., “Study of the enzymatic hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process”, Biotechnol. Bioeng., 41, 846-853 (1993).15 MatLab/Simulink, Version 7.7.0.471 (R2008b), The MathWorks, Inc. (2008).16 Morales-Rodriguez, R., Meyer, A.S., Gernaey, K.V., Sin, G., “Dynamic model-based evaluation of process configurations for integrated operation of hydrolysis and co-fermentation for bioethanol production from lignocellulose”, Bioresource Technol., 102, 1174-1184 (2011).17 Roche, C.M., Dibble, C.J. Stickel, J.J., “Laboratory-scale method for enzymatic saccharification of lignocellulosic biomass at high solid loadings”, Biotechnol. Biofuels, 2, 28, doi:10.1186/1754-6834-2-28 (2009).18 Calsavara, L.P.V., De Moraes, F.F., Zanin, G.M., “Comparison of catalytic properties of free and immobilized cellobiose novozym 188”, Appl. Biochem. Biotechnol., 91-93, 615-626 (2001). |