1 Smith, H.J., Fahrenkamp-Uppenbrink, J., Coontz, R., “Clearing the air”, Science, 325(5948), 1641(2009). 2 White, C.M., Strazisar, B.R., Granite, E.J., Hoffman, J.S., Pennline, H.W.J., “Separation and capture of CO2 from large stationary sources and sequestration in geological”, Chem. Lett., 53(6), 645-715(2003). 3 Xu, X.C., Song, C.S., Andresen, J.M., Miller, B.G., Scaroni, A.W., “Preparation and characterization of novel CO2 molecular basket adsorbents based on polymer-modified mesoporous molecular sieve MCM-41”, Microporous Mesoporous Mater., 62, 29-45(2003). 4 Hiyoshi, N., Yogo, K., Yashima, T., “Adsorption of carbon dioxide on amine modified SBA-15 in the presence of water vapor”, Chem. Lett., 33(5), 510-511(2004). 5 Xu, X.C., Song, C.S., Andresen, J.M., Miller, B.G., Scaroni, A.W., “Novel polyethylenimine-modified mesoporous molecular sieve of CM-41 type as high-capacity adsorbent for CO2 capture”, Energy Fuels, 16, 1463-1469(2002). 6 Xu, X.C., Song, C.S., Andresen, J.M., Miller, B.G., Scaroni, A.W., “Separation of CO2 from power plant flue gas using a novel CO2 “molecular basket” adsorbent”, Fuel Chemistry Division Preprints, 48(1), 162-163(2003). 7 Xu, X.C., Song, C.S., Andresen, J.M., Miller, B.G., Scaroni, A.W., “Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by a novel nanoporous ‘molecular basket’ adsorbent”, Fuel Process. Technology, 86, 1457-1472(2005). 8 Franchi, R.S., Harlick, P.J.E., Sayari, A., “Applications of pore-expanded mesoporous silica. 2. Development of a high-capacity, water-tolerant adsorbent for CO2”, Ind. Eng. Chem. Res., 44, 8007-8013(2005). 9 Kim, S., Ida J., Guliants, V.V., Lin, J.Y.S., “Tailoring pore properties of MCM-48 silica for selective adsorption of CO2”, J. Phys. Chem. B, 109, 6287-6293(2005). 10 Yue, M.B., Chun, Y., Cao, Y., Dong, X., Zhu, J.H., “CO2 capture by as-prepared SBA-15 with an occluded organic template”, Adv. Funct. Mater., 16, 1717-1722(2006). 11 Huang, H.Y., Yang, R.T., Chinn, D., Munson, D.L., “Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas”, Ind. Eng. Chem. Res., 42, 2427-2433(2003). 12 Knowles, G.P., Graham, J.V., Delaney, S.W., Chaffee, A.L., “Aminopropyl-functionalized mesoporous silicas as CO2 adsorbents”, Fuel Process. Technol., 86, 1435-1448(2005). 13 Yokoi, T., Yoshitake, H., Tatsumi, T., “Synthesis of amino-functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-, diand tri-amino-organoalkoxysilanes”, J. Mater. Chem., 14, 951-957(2004). 14 Harlick, P.J.E., Sayari, A., “Amine grafted, pore-expanded MCM-41 for acid gas removal: Effect of grafting temperature, water, and amine type on performance”, Stud. Surf. Sci. Catal., 158, 987-994(2005). 15 Harlick, P.J.E., Sayari, A., “Applications of pore-expanded mesoporous silicas. 3. Triamine silane grafting for enhanced CO2 adsorption”, Ind. End. Chem. Res., 45, 3248-3255(2006). 16 Harlick, P.J.E., Sayari, A., “Applications of pore-expanded mesoporous silica. 5. Triamine grafted material with exceptional CO2 dynamic and equilibrium adsorption performance”, Ind. End. Chem. Res., 46, 446-458(2007). 17 Che, S., Garcia-Bennett, A.E., Yokoi, T., Sakamoto, K., Tatsumi, T., “A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure”, Nature materials, 2, 801-805(2003). 18 Yokoi, T., Yoshitake, H., Tatsumi, T., “Synthesis of anionic-surfactanttemplated mesoporous silica using organoalkoxysilane-containing amino groups”, Chem. Mater., 15, 4536-4538(2003). 19 Khatri, R.A., Chuang, S.S.C., Soong, Y., Gray, M., “Carbon dioxide capture by diamine-grafted SBA-15: A combined fourier transform infrared and mass spectrometry study”, Ind. Eng. Chem. Res., 44, 3702-3708(2005). 20 Zelenak, V., Badanicova, M., Halamova, D., Cejka, J., Zukal, A., Murafa, N., Goerigk, G., “Amine-modified ordered mesoporous silica: Effect of pore size on carbon dioxide capture”, Chem. Eng. J., 144, 336-342(2008). |