1 Wilkes, J.S., “A short history of ionic liquids-from molten salts to neoteric solvents”, Green Chem., 4, 73-80 (2002). 2 Scovazzo, P., Kieft, J., Finan, D.A., Koval, C., DuBois, D., Noble, R., “Gas separations using non-hexafluorophosphate [PF6]- anion supported ionic liquid membranes”, J. Membr. Sci., 238, 57-63 (2004). 3 Anthony, J.L., Maginn, E.J., Brennecke, J.F., “Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3- methylimidazolium hexafluorophosphate”, J. Phys. Chem. B, 106, 7315-7320 (2002). 4 Zhao, Z.J., Dong, H.F., Zhang, X.P., “The research progress of CO2 capture with ionic liquids”, Chin. J. Chem. Eng., 20 (1), 120-129 (2012). 5 Rogers, R.D., Huddleston, J.G., Willauer, H.D., Swatloski, R.P., Visser, A.E., “Room temperature ionic liquids as novel media for clean liquid-liquid extraction”, Chem. Commun., 16, 1765-1766 (1998). 6 Cai, S.F., Wang, L.S., “Epoxidation of unsaturated fatty acid methyl esters in the presence of SO3H-functional Brønsted acidic ionic liquid as catalyst”, Chin. J. Chem. Eng., 19 (1), 57-63 (2011). 7 Wu, B.Q., Reddy, R.G., Rogers, R.D., “Novel ionic liquid thermal storage for solar thermal electric power systems”, In: Proceedings of Solar Forum 2001 Solar Energe: The Power to Choose, Washington, 445-451 (2001) 8 Reddy, R.G., Zhang, Z., Arenas, M.F., Blake, D.M., “Thermal stability and corrosivity evaluations of ionic liquids as thermal energy storage media”, High Tem. Mater. Processes, 22, 87-94 (2003). 9 Bai, L., Li, X., Zhu, J., Chen, B., “Effects of nucleators on the thermodynamic properties of seasonal energy storage materials based on ionic liquids”, Energy and Fuels, 25 (4), 1811-1816 (2011). 10 Liang, R., Yang, M.R., Xuan, X.P., “Thermal stability and thermal decomposition kinetics of 1-butyl-3-methylimidazolium dicyanamide”, Chin. J. Chem. Eng., 18 (5), 736-741 (2010). 11 Valkenburg, M.E.V., Vaughn, R.L., Williams, M., Wilkes, J.S., “Thermochemistry of ionic liquid heat-transfer ?uids”, Thermochim. Acta, 425, 181-188 (2005). 12 Zhu, J., Bai, L., Chen, B., Fei, W., “Thermodynamical properties of phase change materials based on ionic liquids”, Chem. Eng. J., 147, 58-62 (2009). 13 Demberelnyamba, D., Shin, B.K., Lee, H., “Ionic liquids based on n-vinyl-g-butyrolactam: Potential liquid electrolytes and green solvents”, Chem. Commun., 2, 1538-1539 (2002). 14 Du, Z., Li, Z., Guo, S., Zhang, J., Zhu, L., Deng, Y., “Investigation of physicochemical properties of lactam-based bronsted acidic ionic liquids”, J. Phys. Chem. B, 109, 19542-19546 (2005). 15 Yang, J., Zhang, Q., Zhu, L., Zhang, S., Li, J., Zhang, X., Deng, Y., “Novel ionic liquid crystals based on n-alkylcaprolactam as cations”, Chem. Mater., 19, 2544-2550 (2007). 16 García-Miaja, G., Troncoso, J., Romaní, L., “Density and heat capacity as a function of temperature for binary mixtures of 1-butyl-3-methylpyridinium tetrafluoroborate+water, +ethanol, and +nitromethane”, J. Chem. Eng. Data., 52, 2261-2265 (2007). 17 Ge, R., Hardacre, C., Jacquemin, J., Nancarrow, P., Rooney, D.W., “Heat capacities of ionic liquids as a function of temperature at 0.1 MPa. measurement and prediction”, J. Chem. Eng. Data., 53, 2148-2153 (2008). 18 Crosthwaite, J.M., Muldoon, M.J., Dixon, J.K., Anderson, J.L., Brennecke, J.F., “Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids”, J. Chem. Thermodyn., 37, 559-568 (2005). |