[1] M.L. Luo, Q.Z.Wen, J.L. Liu, H.J. Liu, Z.L. Jia, Fabrication of SPES/nano-TiO2 composite ultrafiltration membrane and its anti-fouling mechanism, Chin. J. Chem. Eng. 19 (2011) 45-51.[2] W.Q. Jin, N.P. Xu, J. Shi, Progress in inorganic nanofiltration membrane, Chin. J. Chem. Eng. 6 (1998) 59-67.[3] C.C. Zimmerer, V. Kottke, Effects of spacer geometry on pressure drop,mass transfer, mixing behavior, and residence time distribution, Desalination 104 (1996) 129-134.[4] Z. Cao, D.E. Wiley, A.G. Fane, CFD simulation of net-type turbulence promoters in a narrow channel, J. Membr. Sci. 185 (2001) 157-176.[5] F. Li, W.Meindersma, A.B. de Haan, T. Reith, Optimization of commercial net spacers in spiral wound membrane modules, J. Membr. Sci. 208 (2002) 289-302.[6] F. Li, W. Meindersma, A.B. de Haan, T. Reith, Experimental validation of CFD mass transfer simulations in flat channels with non-woven net spacers, J. Membr. Sci. 232 (2004) 19-30.[7] J. Schwinge, P.R. Neal, D.E.Wiley, D.F. Fletcher, A.G. Fane, Spiral woundmodules and spacers: review and analysis, J. Membr. Sci. 242 (2004) 129-153.[8] K.K. Lau, M.Z. Abu Bakar, A.L. Ahmad, T. Murugesan, Feed spacer mesh angle: 3D modeling, simulation and optimization based on unsteady hydrodynamic in spiral wound membrane channel, J. Membr. Sci. 343 (2009) 16-33.[9] M. Park, J.H. Kim, Numerical analysis of spacer impacts on forward osmosis membrane process using concentration polarization index, J. Membr. Sci. 427 (2013) 10-20.[10] A.L. Ahmad, K.K. Lau,M.Z. Abu Bakar, Impact of different spacer filament geometries on concentration polarization control in narrow membrane channel, J. Membr. Sci. 262 (2005) 138-152.[11] A.L. Ahmad, K.K. Lau, Impact of different spacer filaments geometries on 2D unsteady hydrodynamics and concentration polarization in spiral wound membrane channel, J. Membr. Sci. 286 (2006) 77-92.[12] F. Li, W. Meindersma, A.B. Haan de, T. Reith, Novel spacers for mass transfer enhancement in membrane separation, J. Membr. Sci. 253 (2005) 1-12.[13] G.A. Fimbres-Weihs, D.E. Wiley, Review of 3D CFD modeling of flow and mass transfer in narrow spacer-filled channels in membranemodules, Chem. Eng. Process. 49 (2010) 759-781.[14] V. Geraldes, V. Semiao, M.N. de Pinho, The effect of the ladder-type spacers configuration in NF spiral-wound modules on the concentration boundary layers disruption, Desalination 146 (2002) 187-194.[15] J.C. Min, W. Xu, Numerical prediction of the performance of the fins with punched delta winglets and the louver fins and their comparison, J. Enhanc. Heat Transfer 12 (2005) 357-371.[16] M. Fiebig, Vortices, generators and heat transfer, Chem. Eng. Res. Des. 76 (1998) 108-123.[17] K. Torii, K.M. Kwak, K. Nishino, Heat transfer enhancement accompanying pressureloss reduction with winglet-type vortex generators for fin-tube heat exchangers, Int. J. Heat Mass Transfer 45 (2002) 3795-3801.[18] Y.G. Lei, Y.L. He, L.T. Tian, P. Chu, W.Q. Tao, Hydrodynamics and heat transfer characteristics of a novel heat exchanger with delta-winglet vortex generators, Chem. Eng. Sci. 65 (2010) 1551-1562.[19] G. Biswas, H. Chattopadhyay, A. Sinha, Augmentation of heat transfer by creation of streamwise longitudinal vortices using vortex generators, Heat Transfer Eng. 33 (2012) 406-424.[20] R.L. Webb, N.H. Kim, Principles of Enhanced Heat Transfer, Taylor & Francis, New York, 2005.[21] V. Geraldes, V. Semiao, M.N. de Pinho, Flow and mass transfer modelling of nanofiltration, J. Membr. Sci. 191 (2001) 109-128.[22] M.N. de Pinho, V. Semiao, V. Geraldes, Integrated modeling of transport processes in fluid/nanofiltration membrane systems, J. Membr. Sci. 206 (2002) 189-200.[23] C.P. Koutsou, S.G. Yiantsios, A.J. Karabelas, Numerical simulation of the flow in a plane-channel containing a periodic array of cylindrical turbulence promoters, J. Membr. Sci. 231 (2004) 81-90.[24] D.E. Wiley, D.F. Fletcher, Techniques for computational fluid dynamics modelling of flow in membrane channels, J. Membr. Sci. 211 (2003) 127-237.[25] V. Yakhot, S.A. Orszag, S. Thangam, T.B. Gatski, C.G. Speziale, Development of turbulence models for shear flows by a double expansion technique, Phys. Fluids A 4 (1992) 1510-1520. |