[1] Z. Aksu, Biosorption of reactive dyes by dried activated sludge: equilibrium and kinetic modeling, Biochem. Eng. J. 7 (2001) 79-84. [2] C. Namasivayam, R.T. Yamuna,Waste biogas residual slurry for the removal of Pb(II) from aqueous solution and radiator manufacturing industry wastewater, Bioresour. Technol. 5 (1995) 125-131. [3] S. Banerjee, M.G. Dastidar, Use of jute processing wastes for treatment of wastewater contaminated with dye and other organics, Bioresour. Technol. 96 (2005) 1919-1928. [4] K.G. Bhattacharyya, A. Sharma, Kinetics and the thermodynamics ofmethylene blue adsorption on neem (Azadirachta indica) leaf powder, Dyes Pigments 65 (2005) 51-59. [5] D. Farrusseng, S. Aguado, C. Pinel, Metal-organic frameworks: Opportunities for catalysis, Angew. Chem. Int. Ed. 48 (2009) 7502-7513. [6] G. Ferey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area, Science 309 (2005) 2040-2042. [7] Y. Li, R.T. Yang, Gas adsorption and storage in metal organic framework MOF-177, Langmuir 23 (2007) 12937-12944. [8] B. Chen, S. Ma, F. Zapata, F.R. Fron czek, E.B. Lobkovsky, H.-C. Zhou, Rationally designed micropores within a metal organic framework for selective sorption of gas molecules, Inorg. Chem. 46 (2007) 1233-1236. [9] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J.Wachter, M. O' Keeffe, O.M. Yaghi, Systemic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science 295 (2002) 469-472. [10] H. Verweij, Y.S. Lin, J. Dong, Microporous silica and zeolite membranes for hydrogen purification, MRS Bull. 31 (2006) 756-764. [11] M. Kanezashi, J. O'Brien-Abraham, Y.S. Lin, K. Suzuki, Gas permeation through DDRtype zeolite membranes at high temperatures, AIChE J 54 (2008) 1478-1486. [12] K. Sumida, M.R. Hill, S. Horike, A. Dailly, J.R. Long, Synthesis and hydrogen storage properties of Be12(OH)12(1,3,5-benzenetribenzoate)4, J. Am. Chem. Soc. 131 (2009) 15120-15121. [13] R. Ranjan, M. Tsapatsis, Microporous metal organic framework membrane on porous supports using the seeded growth method, Chem.Mater. 21 (2009) 4920-4924. [14] H. Bux, F. Liang, Y. Li, J. Cravilon, M. Wiebacks, J. Caro, Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis, J. Am. Chem. Soc. 131 (2009) 16000-16001. [15] Y. Qian, F.Z. Xiao, P.Z. Jiong, W.H. Bo, H.B. Xian, Understanding the thermodynamic and kinetic behavior of the CO2/CH4 gas mixture within the porous zirconium terephthalate UiO-66(Zr): a joint experimental and modeling approach, Cryst. Growth Des. 11 (2011) 2839-2845. [16] S.R. Venna, M.A. Carreon, Highly permeable zeolite imidazolate framework—8 membranes for CO2/CH4 separation, J. Am. Chem. Soc. 132 (2010) 76-78. [17] A. Huang, W. Dou, J. Caro, Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization, J. Am. Chem. Soc. 132 (2010) 15562-15564. [18] Y.Y. Qing, D.W. Andrew, L.L. Philip, G. Vincent, S. Christian, M. Guillaume, Functionalizing porous zirconium terephthalate UiO-66(Zr) for natural gas upgrading: a computational exploration, Chem. Commun. 47 (2011) 9603-9605. [19] J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, A new zirconium inorganic building brick formingmetal organic frameworks with exceptional stability, J. Am. Chem. Soc. 130 (2008) 13850-13851. [20] S. Chavan, J.G. Vitillo, M.J. Uddin, F. Bonino, C. Lamberti, E. Groppo, K.P. Lillerud, S. Bordiga, Functionalization of UiO-66 metal-organic framework and highly crosslinked polystyrene with Cr(CO)3: In situ formation, stability, and photoreactivity, Chem. Mater. 22 (2010) 4602-4611. [21] M. Kandiah, M.H. Nilsen, S. Usseglio, S. Jakobsen, M. Olsbye, C. Tilset, E.A. Larabi, F. Quadrelli, K.P. Bonino, Synthesis and stability of tagged UiO-66 Zr-MOFs, Chem. Mater. 22 (2010) 6632-6640. [22] G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, A chromium terephthalate-based solid with unusually large pore volumes and surface area, Science 309 (2005) 2040-2042. [23] S. Diring, S. Furukawa, Y. Takashima, T. Tsuruoka, S. Kitagawa, Controlled multiscale synthesis of porous coordination polymer in nano/micro regimes, Chem. Mater. 22 (2010) 4531-4538. [24] T. Tsuruoka, S. Furukawa, Y. Takashima, K. Yoshida, S. Isoda, S. Kitagawa, Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth, Angew. Chem. Int. Ed. 48 (2009) 4739-4743. [25] S.J. Gregg, K.S. Sing, Adsorption, Surface Area, and Porosity, Academic Press, New York, 1967. [26] I. Langmuir, The adsorption of gases on plane surfaces of glass,mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361-1403. [27] J.H.Wang, Y.F. Ji, S.L. Ding, H.R. Ma, X.J. Han, Adsorption and desorption behavior of tannic acid in aqueous solution on polyaniline adsorbent, Chin. J. Chem. Eng. 21 (2013) 594-599. [28] Robert Sips, On the structure of a catalyst surface, J. Chem. Phys. 16 (1948) 490-495. [29] V.K. Gupta, A. Mittal, L. Krishnan, V. Gajbe, Adsorption kinetics and column operations for the removal and recovery of malachite green from wastewater using bottom ash, Sep. Purif. Technol. 40 (2004) 87-96. [30] Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem. 34 (1999) 451-465. [31] D. Kavitha, C. Namasivayam, Experimental and kinetic studies on methylene blue adsorption by coir pith carbon, Bioresour. Technol. 98 (2007) 14-21. [32] Y.J. Yao, F.F. Xu, M. Chen, Z.X. Xu, Z.W. Zhu, Adsorption behavior of methylene blue on carbon nanotubes, Bioresour. Technol. 101 (2010) 3040-3046. [33] M. Kara, H. Yuzer, E. Sabah, M.S. Celik, Adsorption of cobalt from aqueous solutions onto sepiolite, Water Res. 37 (2003) 224-232. |