1 Kadlec, P., Gabrys, B., Strandt, S., "Data-driven soft sensors in the process industry", Computers Chem. Eng., 33, 795-814 (2009). 2 Hui, P., Tohru, O., Yukihiro, T., Hideo, S., Kazushi, N., Valerie, H.O., Masafumi, M., "RBF-ARX model-based nonlinear system modeling and predictive control with application to a NOx decomposition process", Control Engineering Practice, 12, 191-203 (2004). 3 Dae, S.L., Min, W.L., Seung, H.W., Young, J.K., Jong, M.P., "Nonlinear dynamic partial least squares modeling of a full-scale biological wastewater treatment plant", Process Biochemistry, 41, 2050-2057 (2006). 4 Cao, P.F., Luo, X.L., "Modeling of soft sensor for chemical process", Journal of Chemical Industry and Engineering, 64 (3), 788-800 (2013). (in Chinese) 5 Hector, J.G., Heb, Q.P., Wang, J., "A reduced order soft sensor approach and its application to a continuous digester", Journal of Process Control, 21, 489-500 (2011). 6 Tian, H.P., David, S.H.W., Jang, S.S., "Development of a novel soft sensor using a local model network with an adaptive subtractive clustering approach", Industrial & Engineering Chemistry Research, 49 (10), 4738-4747 (2010). 7 Luo, J.X., Shao, H.H., "Developing dynamic soft sensors using multiple neural networks", Journal of Chemical Industry and Engineering, 54 (12), 1770-1773 (2003). (in Chinese) 8 Elom, D., Huang, B., Xu, F.W., Aris, E., "A decoupled multiple model approach for soft sensors design", Control Engineering Practice, 19, 126-134 (2011). 9 Hong, B.S., Fan, L.T., John, R.S., "Monitoring the process of curing of epoxy/graphite fiber composites with a recurrent neural network as a soft sensor", Artificial Intelligence, 11, 293-306 (1998). 10 Dai, X.Z., Wang, W.C., Ding, Y.H., Sun, Z.Y., "Assumed inherent sensor inversion based ANN dynamic soft-sensing method and its application in erythromycin fermentation process", Computers Chem. Eng., 30, 1203-1225 (2006). 11 Ma, Y., Huang, D.X., Jin, Y.H., "Discuss about dynamic soft-sensing modeling", Journal of Chemical Industry and Engineering (China), 56 (8), 1516-1519 (2005). (in Chinese) 12 Wu, J.F., He, X.R., Chen, B.Z., "Back-propagation neural network model of dynamic system and its application", Journal of Chemical Industry and Engineering (China), 51 (3), 378-382 (2000). (in Chinese) 13 Qin, S.J., "Neural networks for intelligent sensors and control-Practical issues and some solutions", Academic Press, New York (1996). 14 Principe, J.C., Euliano, N.R., Lefebvre, W.C., Neural and Adaptive Systems, Wiley, New York (2000). 15 Eykhoff, P., System Identification—Parameter and State Estimation, John Wiley & Sons, New York (1974). 16 Strejc, V., "Least squares parameter estimation", Automatica, 16, 535-550 (1980). 17 Juan, C.G., Enrique, B., "Identification of block-oriented nonlinear systems using orthonormal", Journal of Process Control, 14, 685-697 (2004). 18 Figueroa, J.L., Biagiola, S.I., Agamennoni, O.E., "An approach for identification of uncertain Wiener systems", Mathmatical and Computer Modelling, 48, 305-315 (2008). 19 Martin, K., Sabina, S., "Identification of Wiener models using optimal local linear models", Simulation Modelling Practice and Theory, 16, 1055-1066 (2008). 20 Ronald, K.P., Martin, P., "Gray-box identification of block-oriented nonlinear models", Journal of Process Control, 10, 301-315 (2000). 21 Wang, D.Q., Ding, F., "Least squares based and gradient based iterative identification for Wiener nonlinear systems", Signal Processing, 91, 1182-1189 (2011). 22 Ding, F., Chen, T.W., "Hierarchical gradient-based identification of multivariable discrete-time systems", Automatica, 41, 315-325 (2005). 23 Ania, L.C., Osvaldo, E.A., Jose, L.F., "A nonlinear model predictive control system based on Wiener piecewise linear models", Journal of Process Control, 13, 655-666 (2003). 24 Martin, K., Sabina, S., "Identification of Wiener models using optimal local linear models", Simulation Modelling Practice and Theory, 16, 1055-1066 (2008). 25 Stefan, T., Hannu, T.T., "Support vector method for identification of Wiener models", Journal of Process Control, 19, 1174-1181 (2009). 26 Shafiee, G., Arefi, M.M., Jahed-Motlagh, M.R., Jalali, A.A., "Nonlinear predictive control of a polymerization reactor based on piecewise linear Wiener model", Chemical Engineering Journal, 143, 282-292 (2008). 27 Fu, Y.F., Su, H.Y., Chu, J., "MIMO soft-sensor model of nutrient for compound fertilizer based on hybrid modeling technique", Chin. J. Chem. Eng., 15 (4), 554-559 (2007). 28 Shang, C., Gao, X., Yang, F., Huang, D., "Novel Bayesian framework for dynamic soft sensor based on support vector machine with finite impulse response", IEEE Transaction on Control Systems Technology, DOI: 10.1109/TCST.2013.2278412. 29 Wu, Y., Luo, X.L., Yuan, Z.H., "Soft sensor modeling with dynamic interpolation neutral network for multirate system", Chemical Industry and Engineering Progress, 28 (8), 1323-1327 (2009). (in Chinese) 30 Gomez, J.G., Jutan, A., Baeyens, E., "Wiener model identification and predictive control of a pH neutralization process", IEE Proc.—Control Theory Appl., 151 (3), 329-338 (2004). 31 Mahmoodi, S., Poshtan, J., Mohammad, R.J.M., Montazeri, A., "Nonlinear model predictive control of a pH neutralization process based on Wiener-Laguerre model", Chemical Engineering Journal, 146, 328-337 (2009). 32 Luo, X.L., Chemical Process Dynamics, Chemical Industry Press, Beijing (2005). (in Chinese) |