[1] R. Zhao, M. Gong, H. Zhu, Y. Chen, Y. Tang, T. Lu, Seed-assisted synthesis of Pd@Au core-shell nanotetrapods and their optical and catalytic properties, Nanoscale 6 (2014) 9273-9278.[2] M.H. Kim, X. Lu, B. Wiley, E.P. Lee, Y. Xia, Morphological evolution of single-crystal Ag nanospheres during the galvanic replacement reaction with HAuCl4, J. Phys. Chem. C 112 (2008) 7872-7876.[3] Y.G. Sun, B. Mayers, Y.N. Xia, Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process, Nano Lett. 3 (2003) 675-679.[4] Y.J. Xiong, J.M. McLellan, J.Y. Chen, Y.D. Yin, Z.Y. Li, Y.N. Xia, Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties, J. Am. Chem. Soc. 127 (2005) 17118-17127.[5] B.Wu, N. Zheng, Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications, Nano Today 8 (2013) 168-197.[6] N.N. Mallikarjuna, R.S. Varma, Microwave-assisted shape-controlled bulk synthesis of noble nanocrystals and their catalytic properties, Cryst. Growth Des. 7 (2007) 686-690.[7] Q. Zhao, Y. Xie, Z. Zhang, X. Bai, Size-selective synthesis of zinc sulfide hierarchical structures and their photocatalytic activity, Cryst. Growth Des. 7 (2007) 153-158.[8] E.W. Bohannan, M.G. Shumsky, J.A. Switzer, Epitaxial electrodeposition of copper(I) oxide on single-crystal gold(100), Chem. Mater. 11 (1999) 2289.[9] G. Cardenas-Trivino, V. Vera, C. Munoz, Silver colloids from nonaqueous solvents, Mater. Res. Bull. 33 (1998) 645-653.[10] T. Kodama, M. Ookubo, S. Miura, Y. Kitayama, Synthesis and characterization of ultrafine Mn(II)-bearing ferrite of type MnxFe3 -xO4 by coprecipitation, Mater. Res. Bull. 31 (1996) 1501-1512.[11] M. Li, H. Schnablegger, S. Mann, Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization, Nature 402 (1999) 393-395.[12] X.M. Zhang, C.Wang, Y. Xie, Y.T. Qian, Preparation and characterization of nanocrystalline nickel monosulfide(h) via the ethanol-thermal reducing process, Mater. Res. Bull. 34 (1999) 1967-1972.[13] J. Huang, L. Lin, D. Sun, H. Chen, D. Yang, Q. Li, Bio-inspired synthesis of metal nanomaterials and applications, Chem. Soc. Rev. 44 (2015) 6330-6374.[14] S.S. Mark, M. Bergkvist, X. Yang, E.R. Angert, C.A. Batt, Self-assembly of dendrimerencapsulated nanoparticle arrays using 2-D microbial S-layer protein biotemplates, Biomacromolecules 7 (2006) 1884-1897.[15] C. Radloff, R.A. Vaia, J. Brunton, G.T. Bouwer, V.K.Ward,Metal nanoshell assembly on a virus bioscaffold, Nano Lett. 5 (2005) 1187-1191.[16] K. Vijayaraghavan, S.P.K. Nalini, Biotemplates in the green synthesis of silver nanoparticles, Biotechnol. J. 5 (2010) 1098-1110.[17] H. Zhou, T. Fan, T. Han, X. Li, J. Ding, D. Zhang, Q. Guo, H. Ogawa, Bacteria-based controlled assembly ofmetal chalcogenide hollow nanostructures with enhanced lightharvesting and photocatalytic properties, Nanotechnology 20 (2009).[18] X. Zhou, L. Zheng, R. Li, B. Li, S. Pillai, P. Xu, Y. Zhang, Biotemplated fabrication of size controlled palladium nanoparticle chains, J. Mater. Chem. 22 (2012) 8862-8867.[19] M.Wang, T.Kong,X. Jing, Y.-K.Hung, D. Sun, L. Lin, Y. Zheng, J. Huang,Q. Li, Fabrication of Au nanowire/Pichia pastoris cell composites with hexadecyltrimethylammonium bromides as a platform for SERS detection: A microorganism-mediated approach, Ind. Eng. Chem. Res. 51 (2012) 16651-16659.[20] H. Yang, M. Du, T. Odoom-Wubah, J. Wang, D. Sun, J. Huang, Q. Li, Microorganismmediated, CTAB-directed synthesis of hierarchically branched Au-nanowire/ Escherichia coli nanocomposites with strong near-infrared absorbance, J. Chem. Technol. Biotechnol. 89 (2014) 1410-1418.[21] M. Wang, T. Odoom-Wubah, H. Chen, X. Jing, T. Kong, D. Sun, J. Huang, Q. Li, Microorganism-mediated synthesis of chemically difficult-to-synthesize Au nanohorns with excellent optical properties in the presence of hexadecyltrimethylammonium chloride, Nanoscale 5 (2013) 6599-6606.[22] X. Jing, D. Huang, H. Chen, T. Odoom-Wubah, D. Sun, J. Huang, Q. Li,Microorganismmediated, CTAC-directed synthesis of SERS-sensitive Au nanohorns with threedimensional nanostructures by Escherichia coli cells, J. Chem. Technol. Biotechnol. 90 (2015) 678-685.[23] H. Meng, S. Sun, J.P. Masse, J.P. Dodelet, Electrosynthesis of Pd single-crystal nanothorns and their application in the oxidation of formic acid, Chem. Mater. 20 (2008) 6998-7002.[24] Y.J. Xiong, B. Wiley, J.Y. Chen, Z.Y. Li, Y.D. Yin, Y.N. Xia, Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties, Angew. Chem. Int. Edit. 44 (2005) 7913-7917.[25] X. Huang, N. Zheng, One-pot, high-yield synthesis of 5-fold twinned Pd nanowires and nanorods, J. Am. Chem. Soc. 131 (2009) 4602.[26] Y.H. Chen, H.H. Hung, M.H. Huang, Seed-mediated synthesis of palladium nanorods and branched nanocrystals and their use as recyclable Suzuki coupling reaction catalysts, J. Am. Chem. Soc. 131 (2009) 9114-9121.[27] B.K. Jena, C.R. Raj, Synthesis of flower-like gold nanoparticles and their electrocatalytic activity towards the oxidation of methanol and the reduction of oxygen, Langmuir 23 (2007) 4064-4070.[28] Z. Wang, X.F. Qian, J. Yin, Z.K. Zhu, Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route, Langmuir 20 (2004) 3441-3448.[29] Z. Yin, H. Zheng, D. Ma, X. Bao, Porous palladium nanoflowers that have enhanced methanol electro-oxidation activity, J. Phys. Chem. C 113 (2009) 1001-1005.[30] A.J. Wang, F.F. Li, J.N. Zheng, H.X. Xi, Z.Y. Meng, J.J. Feng, Green synthesis of porous flower-like palladium with high electrocatalytic activity towards methanol oxidation, RSC Adv. 3 (2013) 10355-10362.[31] G. Li, L. Li, Y. Yuan, J. Shi, Y. Yuan, Y. Li, W. Zhao, J. Shi, Highly efficient mesoporous Pd/CeO2 catalyst for low temperature CO oxidation especially under moisture condition, Appl. Catal. B Environ. 158 (2014) 341-347.[32] N. Kruse, E. Gillet, Size effects in the co-oxidation over supported Pd particles, Z. Phys. D: At. Mol. Clusters 12 (1989) 575-578.[33] S.N. Pavlova, V.I. Savchenko, V.A. Sadykov, V.I. Zaikovskii, A.V. Kalinkin, Lowtemperature co oxidation on iron oxide supported palladium, React. Kinet. Catal. Lett. 59 (1996) 103-110.[34] Y.S. Bi, G.X. Lu, Catalytic CO oxidation over palladium supported NaZSM-5 catalysts, Appl. Catal. B Environ. 41 (2003) 279-286.[35] F. Lu, D. Sun, J. Huang,M. Du, F. Yang, H. Chen, Y. Hong, Q. Li, Plant-mediated synthesis of Ag-Pd alloy nanoparticles and their application as catalyst toward selective hydrogenation, ACS Sustainable Chem. Eng. 2 (2014) 1212-1218.[36] M. Du, D. Sun, H. Yang, J. Huang, X. Jing, T. Odoom-Wubah, H.Wang, L. Jia, Q. Li, Influence of Au particle size on Au/TiO2 catalysts for CO oxidation, J. Phys. Chem. C 118 (2014) 19150-19157.[37] F. Yang, J. Huang, T. Odoom-Wubah, Y. Hong,M. Du, D. Sun, L. Jia, Q. Li, Efficient Ag/CeO2 catalysts for CO oxidation prepared with microwave-assisted biosynthesis, Chem. Eng. J. 269 (2015) 105-112.[38] L. Scarabelli, M. Coronado-Puchau, J.J. Giner-Casares, J. Langer, L.M. Liz-Marzan, Monodisperse gold nanotriangles: Size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering, ACS Nano 8 (2014) 5833-5842.[39] C. Zhu, J. Zeng, P. Lu, J.Y. Liu, Z.Z. Gu, Y.N. Xia, Aqueous-phase synthesis of singlecrystal Pd seeds 3 nm in diameter and their use for the growth of pd nanocrystals with different shapes, Chem. Eur. J. 19 (2013) 5127-5133.[40] R. Suresh, V. Ponnuswamy, R. Mariappan, Nanostructured cerium oxide thin films by nebulized spray pyrolysis (NSP) technique: Impact of surfactants on the structural, optical and compositional properties, Ceram. Int. 40 (2014) 13515-13527.[41] W.Q. Han, D. Su, M. Murphy, M.Ward, T.K. Sham, L.J.Wu, Y.M. Zhu, Y.F. Hu, T. Aoki, Microstructure and electronic behavior of PtPd@Pt core-shell nanowires, J. Mater. Res. 25 (2010) 711-717.[42] S. Tang, S. Vongehr, Z. Zheng, H. Ren, X.Meng, Facile and rapid synthesis of spherical porous palladium nanostructures with high catalytic activity for formic acid electrooxidation, Nanotechnology 23 (2012).[43] G. Avgouropoulos, T. Ioannides, C. Papadopoulou, J. Batista, S. Hocevar, H.K.Matralis, A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO-CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen, Catal. Today 75 (2002) 157-167.[44] F. Wang, Y. Xu, K. Zhao, D. He, Preparation of palladium supported on ferric oxide nano-catalysts for carbon monoxide oxidation in low temperature, Nano-Micro Lett. 6 (2014) 233-241.[45] H.A. Elazab, S.Moussa, B.F. Gupton,M.S. El-Shall,Microwave-assisted synthesis of Pd nanoparticles supported on Fe3O4, Co3O4, and Ni(OH)(2) nanoplates and catalysis application for CO oxidation, J. Nanopart. Res. 16 (2014) 11.[46] P. Estifaee, M. Haghighi, N. Mohammadi, F. Rahmani, CO oxidation over sonochemically synthesized Pd-Cu/Al2O3 nanocatalyst used in hydrogen purification: Effect of Pd loading and ultrasound irradiation time, Ultrason. Sonochem. 21 (2014) 1155-1165.[47] M. Jin, J.N. Park, J.K. Shon, J.H. Kim, Z. Li, Y.K. Park, J.M. Kim, Low temperature CO oxidation over Pd catalysts supported on highly ordered mesoporous metal oxides, Catal. Today 185 (2012) 183-190.[48] G. Dong, J.Wang, Y. Gao, S. Chen, A novel catalyst for CO oxidation at low temperature, Catal. Lett. 58 (1999) 37-41.[49] X. Liu, R.Wang, L. Song, H. He, G. Zhang, X. Zi,W. Qiu, The oxidation of carbon monoxide over the palladiumnanocube catalysts: Effect of the basic-property of the support, Catal. Commun. 46 (2014) 213-218. |