[1] M.L. Bransby, J. Jenkinson, The Management of Alarm System, CRR 166/1998, Health and Safety Executive, 1998.[2] B.R. Hollifield, E. Habibi, The Alarm Management Handbook: A comprehensive Guide, PAS, Huston, Texas, 2006.[3] D.H. Rothenberg, Alarm Management for Process Control, Momentum Press, New York, 2009.[4] EEMUA, Alarm Systems: A Guide to Design, Management, and Procurement, 3 ed. EEMUA, London, UK, 2013.[5] ISA, Technical Report ANSI/ISA -18.2-2009, 2009.[6] F. Yang, D. Xiao, Progress in root cause and fault propagation analysis of large-scale industrial processes, J. Control Sci. Eng. 2012 (2012) 1-10.[7] M. Iri, K. Aoki, E. O'Shima, H. Matsuyama, An algorithm for diagnosis of system failures in the chemical process, Comput. Chem. Eng. 3 (1) (1979) 489-493.[8] M. Ram Maurya, R. Rengaswamy, V. Venkatasubramanian, Application of signed digraphs-based analysis for fault diagnosis of chemical process flowsheets, Eng. Appl. Artif. Intell. 17 (5) (2004) 501-518.[9] M. Ram Maurya, R. Rengaswamy, V. Venkatasubramanian, A signed directed graph and qualitative trend analysis-based framework for incipient fault diagnosis, Chem. Eng. Res. Des. 85 (10) (2007) 1407-1422.[10] F. Yang, S.L. Shah, D. Xiao, SDG (Signed Directed Graph) based process description and fault propagation analysis for a tailings pumping process, Proceedings of the 13th IFAC Symposium on Automation in Mining, Mineral and Metal Processing, Cape Town, South Africa, 2010.[11] H. Jiang, R. Patwardhan, S.L. Shah, Root cause diagnosis of plant-wide oscillations using the concept of adjacency matrix, J. Process Control 19 (8) (2009) 1347-1354.[12] F. Dahlstrand, Consequence analysis theory for alarm analysis, Knowl.-Based Syst. 15 (1) (2002) 27-36.[13] M. Schleburg, L. Christiansen, N.F. Thornhill, A. Fay, A combined analysis of plant connectivity and alarm logs to reduce the number of alerts in an automation system, J. Process Control 23 (6) (2013) 839-851.[14] F. Yang, S.L. Shah, D. Xiao, T. Chen, Improved correlation analysis and visualization of industrial alarm data, ISA Trans. 51 (4) (2012) 499-506.[15] Z. Yang, J. Wang, T. Chen, Detection of correlated alarms based on similarity coefficients of binary data, IEEE Trans. Autom. Sci. Eng. 10 (4) (2013) 1014-1025.[16] M. Bauer, J.W. Cox, M.H. Caveness, J.J. Downs, N.F. Thornhill, Finding the direction of disturbance propagation in a chemical process using transfer entropy, IEEE Trans. Control Syst. Technol. 15 (1) (2007) 12-21.[17] P. Duan, F. Yang, T. Chen, S.L. Shah, Direct causality detection via the transfer entropy approach, IEEE Trans. Control Syst. Technol. 21 (6) (2013) 2052-2066.[18] P. Duan, F. Yang, S.L. Shah, T. Chen, Transfer zero-entropy and its application for capturing cause and effect relationship between variables, IEEE Trans. Control Syst. Technol. (2014) http://dx.doi.org/10.1109/TCST.2014.2345095.[19] S. Dey, J.A. Stori, A Bayesian network approach to root cause diagnosis of process variations, Int. J. Mach. Tools Manuf. 45 (1) (2005) 75-91.[20] S. Pradhan, R. Singh, K. Kachru, S. Narasimhamurthy, A Bayesian network based approach for root-cause-analysis in manufacturing process, Computational Intelligence and Security, 2007 International Conference on, IEEE 2007, pp. 10-14.[21] P. Duan, F. Yang, S.L. Shah, T. Chen, Capturing Connectivity and Causality in Complex Industrial Processes, Springer, 2014.[22] G. Weidl, A.L. Madsen, S. Israelson, Applications of object-oriented Bayesian networks for condition monitoring, root cause analysis and decision support on operation of complex continuous processes, Comput. Chem. Eng. 29 (9) (2005) 1996-2009.[23] P. Duan, T. Chen, S.L. Shah, F. Yang, Methods for root cause diagnosis of plant-wide oscillations, AIChE J. 60 (6) (2014) 2019-2034.[24] Y.Wan, F. Yang, N. Lv, H. Xu, H. Ye,W. Li, A.K. Usadi, Statistical root cause analysis of novel faults based on digraph models, Chem. Eng. Res. Des. 91 (1) (2013) 87-99.[25] F. Yang, S. Shah, D. Xiao, Signed directed graph based modeling and its validation from process knowledge and process data, Int. J. Appl. Math. Comput. 22 (1) (2012) 41-53.[26] L. Abele, M. Anic, T. Gutmann, J. Folmer, M. Kleinsteuber, B. Vogel-Heuser, Combining knowledgemodeling andmachine learning for alarmroot cause analysis, Manuf. Model. Manage. Control 7 (1) (2013) 1843-1848.[27] J. Thambirajah, L. Benabbas, M. Bauer, N.F. Thornhill, Cause-and-effect analysis in chemical processes utilizing XML, plant connectivity and quantitative process history, Comput. Chem. Eng. 33 (2) (2009) 503-512.[28] Y. Chang, F. Khan, S. Ahmed, A risk-based approach to design warning system for processing facilities, Process. Saf. Environ. Prot. 89 (5) (2011) 310-316.[29] S. Ahmed, H.A. Gabbar, Y. Chang, F.I. Khan, Risk based alarm design: A systems approach, 2011 International Symposium on Advanced Control of Industrial Processes (ADCONIP), IEEE 2011, pp. 42-47.[30] Q.X. Zhu, Z.Q. Geng, A new fuzzy clustering-ranking algorithm and its application in process alarm management, Chin. J. Chem. Eng. 13 (4) (2005) 477-483.[31] Z. Geng, Q. Zhu, X. Gu, A fuzzy clustering-ranking algorithm and its application for alarm operating optimization in chemical processing, Process. Saf. Prog. 24 (1) (2005) 66-75.[32] O.M. Foong, S. Sulaiman, D.R.B.A. Rambli, ALAP: Alarm prioritization system for oil refinery, Proceedings of theWorld Congress on Engineering and Computer Science, San Francisco, 2009.[33] V. Ravi, R. Shankar, M.K. Tiwari, Productivity improvement of a computer hardware supply chain, Int. J. Product. Perform. Manag. 54 (4) (2005) 239-255.[34] K. Govindan, M. Palaniappan, Q. Zhu, D. Kannan, Analysis of third party reverse logistics provider using interpretive structural modeling, Int. J. Prod. Econ. 140 (1) (2012) 204-211.[35] M.F. Ansari, R.K. Kharb, S. Luthra, S.L. Shimmi, S. Chatterji, Analysis of barriers to implement solar power installations in India using interpretive structural modeling technique, Renew. Sustain. Energy Rev. 27 (2013) 163-174.[36] S. Luthra, V. Kumar, S. Kumar, A. Haleem, Barriers to implement green supply chain management in automobile industry using interpretive structural modeling technique: An Indian perspective, J. Ind. Eng. Manag. 4 (2) (2011) 231-257.[37] R. Likert, A technique for the measurement of attitudes, Arch. Psychol. 140 (1932) 1-55.[38] M.Á. Gil, G. González-Rodríguez, Fuzzy vs. Likert scale in statistics, Combining Experimentation and Theory, Springer, 2012 407-420.[39] Y. Zuo, G. Yu, M.G. Tadesse, H.W. Ressom, Biological network inference using low order partial correlation, Methods 69 (3) (2014) 266-273.[40] P. Charan, R. Shankar, R.K. Baisya, Analysis of interactions among the variables of supply chain performance measurement system implementation, Bus. Process. Manag. J. 14 (4) (2008) 512-529.[41] J.J. Downs, E.F. Vogel, A plant-wide industrial process control problem, Comput. Chem. Eng. 17 (3) (1993) 245-255.[42] D.R. Vinson, C. Georgakis, J. Fossy, Studies in plant-wide controllability using the Tennessee Eastman Challenge problem, the case for multivariable control, American Control Conference, Proceedings of the 1995, 1, IEEE 1995, pp. 250-254.[43] P.R. Lyman, C. Georgakis, Plant-wide control of the Tennessee Eastman problem, Comput. Chem. Eng. 19 (3) (1995) 321-331.[44] N. Lawrence Ricker, Decentralized control of the Tennessee Eastman challenge process, J. Process Control 6 (4) (1996) 205-221.[45] N. Ye, T.J. McAvoy, K.A. Kosanovich, M.J. Piovoso, Plant-wide control using an inferential approach, American Control Conference, 1993, IEEE 1993, pp. 1900-1904.[46] T.J. McAvoy, A methodology for screening level control structures in plantwide control systems[J], Comput. Chem. Eng. 22 (11) (1998) 1543-1552.[47] T. Larsson, K. Hestetun, E. Hovland, S. Skogestad, Self-optimizing control of a largescale plant: The Tennessee Eastman process, Ind. Eng. Chem. Res. 40 (22) (2001) 4889-4901. |