[1] A.G. Jones, Crystallization Process Systems, Butterworth-Heinemann, London, UK, 2002. [2] S. Qamar, S. Noor, M.S. Rehman, A. Seidel-Morgenstern, Numerical solution of a multi-dimensional batch crystallization model with fines dissolution, Comput. Chem. Eng. 35 (2011) 412-422. [3] H.M. Hulburt, S. Katz, Some problems in particle technology, Chem. Eng. Sci. 19 (1964) 555-574. [4] A.D. Randolph, M.A. Larson, Theory of Particulate Processes, Academic Press, 1988. [5] D.L. Marchisio, R.D. Vigil, R.O. Fox, Quadrature method of moments for aggregationbreakage processes, J. Colloid Interface Sci. 258 (2003) 322-334. [6] J.C. Barret, J.S. Jheeta, Improving the accuracy of the moments method for solving the aerosol general dynamic equation, J. Aerosol Sci. 27 (1996) 1135-1142. [7] S. Kumar, D. Ramkrishna, On the solution of population balance equations by discretization—I. A fixed pivot technique, Chem. Eng. Sci. 51 (1996) 1311-1332. [8] S. Qamar, G.Warnecke, Numerical solution of population balance equations for nucleation growth and aggregation processes, Comput. Chem. Eng. 31 (2007) 1576-1589. [9] P.N. Singh, D. Ramkrishna, S. Kumar, Solution of population balance equation by MWR, Comput. Chem. Eng. 23-31 (1977). [10] B.H. Shah, D. Ramkrishna, J.D. Borwanker, Simulation of particulate systems using concept of the interval of quiescence, AICHE J. 23 (1977) 897-904. [11] A. Maisel, F.E. Kruis, H. Fissan, Direct Monte Carlo simulation of coagulation and aggregation, J. Aerosol Sci. 30 (1999) 417-418. [12] M. Song, X.J. Qiu, Alternative to the concept of the interval of quiescence (IQ) in the Monte Carlo simulation of population balances, Chem. Eng. Sci. 54 (1999) 5711-5716. [13] S. Kumar, D. Ramkrishna, On the solution of population balance equations by discretization—III. Nucleation, growth and aggregation of particles, Chem. Eng. Sci. 52 (1997) 4659-4679. [14] P. Woranee, K. Paisan, A. Amornchai, Batch-to-batch Optimization of Batch Crystallization Processes, CJCHE 16 (2008) 26-29. [15] R. Gunawan, I. Fusman, R.D. Braatz, High resolution algorithms formultidimensional population balance equations, AICHE J. 50 (2004) 2738-2749. [16] Z. Yuliang, Z. Beike, M. Xin, C. Liulin, Consequence identification for maloperation in batch process, CJCHE 21 (2013) 1347-1359. [17] S. Qamar, G. Warnecke, M.P. Elsner, On the solution of population balances for nucleation, growth, aggregation and breakage processes, Chem. Eng. Sci. 64 (2009) 2088-2095. [18] J.B. Rawlings, S.M. Miller,W.R. Witkowski, Model identification and control of solution crystallization processes, Ind. Eng. Chem. Res. 32 (1993) 1275-1296. [19] M.W. Hermanto, N.C. Kee, R.B.H. Tan,M.S. Chiu, R.D. Braatz, Robust Bayesian estimation of kinetics for the polymorphic transformation of L-glutamic acid crystals, AICHE J. 54 (2008) 3248-3259. [20] Hermanto, R.D. Braatz, M.S. Chiu, High-order simulation of polymorphic crystallization using weighted essentially nonoscillatory methods, AICHE J. 55 (122-131) (2008). [21] S.C. Chang, Themethod of space time conservation element and solution element—a new approach for solving Navier-Stokes and Euler equations, J. Comput. Phys. 119 (1999) 295-324. |