[1] P. Debye, E. Hückel, Zur Theorie der Electrolyte. I. Gefrierpunkt-serniedrigung und Verwandte Erscheinungen. Physikalische Zeitschrift, Phys. Z. 24 (1923) 185-206.[2] R.H. Fowler, E.A. Guggenheim, Statistical Thermodynamics, Cambridge University Press, Cambridge, U.K., 1956[3] L.A. Bromley, Approximate individual ion value of β (or B) in extended Debye-Hückel theory for uni-univalent aqueous solutions at 298.15 K, J. Chem. Thermodyn. 4 (1972) 669-673.[4] J.E. Mayer, The theory of ionic solutions, J. Chem. Phys. 18 (1950) 1426-1436.[5] R.A. Robinson, R.H. Stokes, Electrolyte Solutions, 2nd ed. Butterworths, London, 1959.[6] J.L. Lebowitz, J.K. Percus, Mean spherical model for lattice gases with extended hard cores and continuum fluids, Phys. Rev. 144 (1966) 251-258.[7] L. Blum, Mean spherical model for asymmetric electrolytes, Mol. Phys. 30 (1975) 1529-1535.[8] R. Triolo, L. Blum, M.A. Floriano, Simple electrolytes in the mean spherical approximation. III. A workable model for aqueous solutions, J. Chem. Phys. 67 (1977) 5956-5959.[9] R. Triolo, J.R. Grigera, L. Blum, Simple electrolytes in the mean spherical approximation, J. Phys. Chem. 80 (1976) 1858-1861.[10] J.F. Lu, Y.X. Yu, Y.G. Li, Modification and application of the mean spherical approximation method, Fluid Phase Equilib. 85 (1993) 81-100.[11] J.P. Simonin, L. Blum, P. Turq, Real ionic solutions in the mean spherical approximation. 2. Pure strong electrolytes up to very high concentrations, and mixtures, in the primitive model, J. Phys. Chem. 100 (1996) 7704-7709.[12] J.P. Simonin, Real ionic solutions in the mean spherical approximation. 1. Simple salts in the primitive model, J. Phys. Chem. B 101 (1997) 4313-4320.[13] A.C. Tikanen, W.R. Fawcett, Application of the mean spherical approximation and ion association to describe the activity coefficients of aqueous 1:1 electrolytes, J. Electroanal. Chem. 439 (1997) 107-113.[14] N. Papaiconomou, J.P. Simonin, O. Bernard, W. Kunz, MSA-NRTL model for the description of the thermodynamic properties of electrolyte solutions, Phys. Chem. Chem. Phys. 4 (2002) 4435-4443.[15] C.W. Outhwaite, Extension of the Debye-Hückel theory of electrolyte solutions, J. Chem. Phys. 50 (1969) 2277-2288.[16] C.W. Outhwaite, Symmetrical radial distribution functions in the potentially theory of electrolyte solutions, Chem. Phys. Lett. 53 (1978) 599-601.[17] C.W. Outhwaite, Numerical solution of a Poisson-Boltzmann theory for a primitive model electrolyte with size and charge asymmetric ions, J. Chem. Soc. Faraday Trans. 83 (1987) 949-959.[18] M. Molero, C.W. Outhwaite, L.B. Bhuiyan, Individual ionic activity coefficients from a symmetrical Poisson-Boltzmann theory, J. Chem. Soc. Faraday Trans. 88 (1992) 1541-1547.[19] R. Kjellander, D.J. Mitchell, An exact but linear and Poisson-Boltzmann-like theory for electrolytes and colloid dispersions in the primitive model, Chem. Phys. Lett. 200 (1992) 76-82.[20] L.M. Varela, M.P. Rodriguez, M. Garcia, F. Sarmiento, V. Mosquera, Static structure of electrolyte systems and the linear response function on the basis of a dressed-ion theory, J. Chem. Phys. 109 (1998) 1930-1938.[21] S. Abbas, S. Nordholm, Simple estimation of surface tension of single-component fluids, J. Colloid Interface Sci. 166 (1994) 481.[22] D. Fraenkel, Simplified electrostatic model for the thermodynamic excess potentials of binary strong electrolyte solutionswith size-dissimilar ions, Mol. Phys. 108 (2010) 1435-1466.[23] H. David, R. Resnick, J.Walker, Fundamentals of Physics, 7th ed. JohnWiley and Sons Inc., USA, 2005.[24] J. Barthel, H. Krienke,W. Kunz, Physical Chemistry of Electrolyte Solutions: Modern Aspects, Steinkopff/Springer, Darmstadt/New York, 1998.[25] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A 32 (1976) 751-767.[26] J. O'Connell, A.E. GeGane, Thermodynamic properties of strong electrolyte solutions from correlation functions, J. Solut. Chem. 4 (1975) 763-778.[27] Z. Abbas, E. Ahlberg, S. Nordholm, Monte Carlo simulations of salt solutions: exploring the validity of primitive models, J. Phys. Chem. B 113 (2009) 5905-5916.[28] D.N. Card, J.P. Valleau,Monte Carlo study of the thermodynamics of electrolyte solutions, J. Chem. Phys. 52 (1970) 6232-6240.[29] W.J. Hamer, Y.C. Wu, Osmotic coefficients and mean activity coefficients of uniunivalent electrolytes in water at 25 ℃, J. Phys. Chem. Ref. Data 4 (1972) 1047-1100.[30] J. Kiepe, A.K. Rodrigues, S. Horstmann, J. Gmehling, Experimental determination and correlation of liquid density data of electrolyte mixtures containing water or methanol, Ind. Eng. Chem. Res. 42 (2003) 2022-2029.[31] B.Y. Dan, D. Andelman, R. Podgornik, Dielectric decrement as a source of ion-specific effects, J. Chem. Phys. 134 (2011) 704-705.[32] G.W. Vera, J.H. Vera, On the measurement of individual ion activities, Fluid Phase Equilib. 236 (2005) 96-110.[33] G.W. Vera, E. Rodil, J.H. Vera, Towards accurate values of individual ion activities additional data for NaCl, NaBr and KCl, and new data for NH4Cl, Fluid Phase Equilib. 241 (2006) 59-69.[34] W.D. Yan, Y.J. Xu, S.J. Han, Activity coefficients of sodium chloride in methanol-water mixed solvents at 298.15 K, Acta Chim. Sin. 52 (1994) 937-946.[35] M.A. Esteso, D.O.M. Gonzalez, L.F. Hernandez, Activity coefficients for NaCl in ethanol-water mixtures at 25 ℃, J. Solut. Chem. 18 (1989) 277-288.[36] D.O.M. Gonzalez, M.L. Fernandez, M.L.F. Hernandez, M.A. Esteso, Activity coefficients for NaBr in ethanol-water mixtures at 25 ℃, J. Solut. Chem. 24 (1995) 551-563.[37] L. Malahias, O. Popovych, Activity coefficients and transfer free energies of potassium chloride in methanol-water solvents at 25 ℃, J. Chem. Eng. Data 27 (1982) 105-109. |