[1] H. Xie,H. Yue, J. Zhu, et al., Scientific and engineering progress in CO2mineralization using industrial waste and natural minerals, Engineering 1(1) (2015) 150-157.[2] K. Huang, X. Meng, G. Wang, Research progress of extracting potassium from potassium feldspar, Phosphate Comp. Fertil. 5(2011) 008.[3] M. Xu, L. Zhang, B. Wang, et al., Preparation of 13X molecular sieve from potassium feldspar and its performance characterization, Ind. Catal. 22(7) (2014) 521-524.[4] M.V. Twigg, M.S. Spencer, Deactivation of supported copper metal catalysts for hydrogenation reactions, Appl. Catal. A Gen. 212(1) (2001) 161-174.[5] M. Sorai, T. Ohsumi, M. Ishikawa, Nanoscale surface observation of feldspar dissolved under supercritical CO2-water-mineral system, Energy 30(11) (2005) 2334-2343.[6] M. Qiu, H. Ma, Y. Nie, et al., Experimental study on synthesis of Tobermorite by decomposing potassium feldspar, Geoscience 3(2005) 004.[7] J.A. Stewart, Potassium sources, use, and potential, Potassium Agric. (1985) 83-98(potassiuminagri).[8] D. Zhenwu, Extraction of potassium from K-feldspar with Fluosilicic acid using hydrothermal decomposition method, J. Sichuan Univ. (Eng. Sci. Ed.) 46(2015) 151-154.[9] N. Kampman, M. Bickle, J. Becker, et al., Feldspar dissolution kinetics and Gibbs free energy dependence in a CO2-enriched groundwater system, Green River, Utah, Earth Planet. Sci. Lett. 284(3) (2009) 473-488.[10] X. Bi, D.H. Cornell, R. Hu, REE composition of primary and altered feldspar from the mineralized alteration zone of alkaline intrusive rocks, Western Yunnan Province, China, Ore Geol. Rev. 19(1) (2002) 69-78.[11] X. Wang, Z. Zhang, X. Yang, et al., Analysis on new approaches for utilization of phosphogypsum in China, Mod. Chem. Ind. 5(2011) 002.[12] Y. Shen, J. Qian, J. Chai, et al., Calcium sulphoaluminate cements made with phosphogypsum:Production issues and material properties, Cem. Concr. Compos. 48(2014) 67-74.[13] J. Zhou, H. Gao, Z. Shu, et al., Utilization of waste phosphogypsum to prepare nonfired bricks by a novel hydration-recrystallization process, Constr. Build. Mater. 34(2012) 114-119.[14] B. Yan, L. Ma, J. Ma, et al., Mechanism analysis of Ca, S transformation in phosphogypsum decomposition with Fe catalyst, Ind. Eng. Chem. Res. 53(2014) 7648-7654.[15] L. Ma, Y. Du, X. Niu, et al., Thermal and kinetic analysis of the process of thermochemical decomposition of phosphogypsum with CO and additives, Ind. Eng. Chem. Res. 51(2012) 6680-6685.[16] X. Yan, L. Ma, B. Zhu, et al., Reaction mechanism process analysis with phosphogypsum decomposition in multiatmosphere control, Ind. Eng. Chem. Res. 53(50) (2014) 19453-19459.[17] X.Y. Han, H.K. Chen, B.Q. Lin, Thermogravimetric research of reductiondecomposition of CaSO4 in the atmosphere of H2, Coal Convers. 23(2) (2000) 72-75.[18] S. Schuyten, S. Guerrero, J.T. Miller, et al., Characterization and oxidation states of Cu and Pd in Pd-CuO/ZnO/ZrO2 catalysts for hydrogen production by methanol partial oxidation, Appl. Catal. A Gen. 352(1) (2009) 133-144.[19] J. Gibbins, H. Chalmers, Carbon capture and storage, Energ Policy 36(12) (2008) 4317-4322.[20] J.A. Bergerson, D.W. Keith, The truth about dirty oil:Is CCS the answer? Environ. Sci. Technol. 44(16) (2010) 6010-6015.[21] J.H. Han, I.B. Lee, Multiperiod stochastic optimization model for carbon capture and storage infrastructure under uncertainty in CO2 emissions, product prices, and operating costs, Ind. Eng. Chem. Res. 51(35) (2012) 11445-11457.[22] M. Yang, Y. Song, L. Jiang, et al., CO2 hydrate formation and dissociation in cooled porous media:A potential technology for CO2 capture and storage, Environ. Sci. Technol. 47(17) (2013) 9739-9746.[23] W. Bao, H. Li, Y. Zhang, Selective leaching of steelmaking slag for indirect CO2 mineral sequestration, Ind. Eng. Chem. Res. 49(5) (2010) 2055-2063.[24] E. Eikeland, A.B. Blichfeld, C. Tyrsted, et al., Optimized carbonation of magnesium silicate mineral for CO2 storage, ACS Appl. Mater. Interfaces 7(9) (2015) 5258-5264.[25] W.J.J. Huijgen, G.J. Witkamp, R.N.J. Comans, Mineral CO2 sequestration by steel slag carbonation, Environ. Sci. Technol. 39(24) (2005) 9676-9682.[26] O. Rahmani, R. Junin, M. Tyrer, et al., Mineral carbonation of red gypsum for CO2 sequestration, Energy Fuel 28(9) (2014) 5953-5958.[27] L. Ye, H. Yue, Y.Wang, et al., CO2 mineralization of activated K-feldspar +CaCl2 slag to fix carbon and produce soluble potash salt, Ind. Eng. Chem. Res. 53(26) (2014) 10557-10565.[28] E.A. Dorko, R.W. Crossley, Solid state reaction kinetics. Ⅲ. Calculation of rate constants of decomposition for a melting system undergoing volume and surface changes, J. Phys. Chem. 76(16) (1972) 2253-2256.[29] S. Tamhankar, L. Doraiswamy, Solid-solid reactions. Diffusion and reaction in pelletpellet systems, Ind. Eng. Chem. Fundam. 17(1978) 84-89.[30] K.C. Chou, A kineticmodel for oxidation of Si-Al-O-Nmaterials, J. Am. Ceram. Soc. 89(5) (2006) 1568-1576.[31] C. Li,W. Qiu, X. Kang, et al., Kinetics of synthesis of Ba 1.0 Co 0.7 Fe 0.2 Nb 0.1 O 3-δ through solid-solid reaction, Acta Phys. -Chim. Sin. 24(5) (2008) 767-771.[32] L. Yang, M. Fang, J. Liu, et al., Effects of nonionic surfactants on the luminescent properties of CaSiO3:pb, Mn phosphors, J. Mater. Sci. Eng. 2(2007) 005.[33] W.J.J. Huijgen, G.J. Witkamp, R.N.J. Comans, Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process, Chem. Eng. Sci. 61(13) (2006) 4242-4251.[34] C. Wang, H. Yue, C. Li, et al., Mineralization of CO2 using natural K-feldspar and industrial solid waste to produce soluble potassium, Ind. Eng. Chem. Res. 53(19) (2014) 7971-7978.[35] W.J.J. Huijgen, G.J. Ruijg, R.N.J. Comans, et al., Energy consumption and net CO2 sequestration of aqueous mineral carbonation, Ind. Eng. Chem. Res. 45(26) (2006) 9184-9194.[36] W.Wong-Ng, L.P. Cook, BaO-1/2Y2O3-CuOx eutecticmelting in air, J. Am. Ceram. Soc. 77(7) (1994) 1883-1888.[37] L. Chudinovskikh, R. Boehler, Eutectic melting in the system Fe-S to 44 GPa, Earth Planet. Sci. Lett. 257(1) (2007) 97-103.[38] A. Zerr, G. Serghiou, R. Boehler, Melting of CaSiO3 perovskite to 430 kbar and first insitu measurements of lower mantle eutectic temperatures, Geophys. Res. Lett. 24(8) (1997) 909-912.[39] J.F. Carpenter, B.S. Chang, W. Garzon-Rodriguez, et al., Rational design of stable lyophilized protein formulations:Theory and practice[M]//rational design of stable protein formulations, Springer, US, 2002109-133.[40] J.R. Bielenberg, H.J. Viljoen, Chemo-mechanical interaction in solid-solid reactions, AIChE J. 45(5) (1999) 1072-1084.[41] C. Ghoroi, A.K. Suresh, Solid-solid reaction kinetics:Formation of tricalcium aluminate, AIChE J. 53(2) (2007) 502-513.[42] A.M. Ginstling, B.I. Brounshtein, Concerning the diffusion kinetics of reactions in spherical particles, J. Appl. Chem. USSR 23(12) (1950) 1327-1338.[43] G.W. Brindley, R. Hayami, Kinetics and mechanism of formation of forsterite (Mg2SiO4) by solid state reaction of MgO and SiO2, Philos. Mag. 12(117) (1965) 505-514.[44] B.M. Mohamed, J.H. Sharp, Kinetics and mechanism of formation of tricalcium aluminate, Ca3Al2O6, Thermochim. Acta 388(1) (2002) 105-114.[45] J. Šesták, G. Berggren, Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures, Thermochim. Acta 3(1) (1971) 1-12.[46] H.E. Kissinger, Reaction kinetics in differential thermal analysis, Anal. Chem. 29(11) (1957) 1702-1706.[47] H.L. Lu, Research on preparation of Portland cement from desulphurization gypsum, Nanjing Univ. Sci. Technol. (2013).[48] L.H. Qiu, Z.M. Jin, Experimental study of the thermal decomposition of potassium feldspar for producing potassium sulfate, Fertil. Ind. 27(2000) 19-21. |