[1] P. Erni, A. Elabbadi, Free impinging jet microreactors:controlling reactive flows via surface tension and fluid viscoelasticity, Langmuir 29(2013) 7812-7824.[2] B.K. Johnson, R.K. Prud'homme, Chemical processing and micromixing in confined impinging jets, AICHE J. 49(2003) 2264-2282.[3] D.V.R. Kumar, B.L.V. Prasad, A.A. Kulkarni, Impinging jetmicromixer for flowsynthesis of nanocrystalline MgO:Role of mixing/impingement zone, Ind. Eng. Chem. Res. 52(2013) 17376-17382.[4] I. Valente, E. Celaco, D.L.Marchisio, A.A. Barresi,Nanoprecipitation in confined impinging jets mixers:Production, characterization and scale-up of pegylated nanospheres and nanocapsules for pharmaceutical use, Chem. Eng. Sci. 77(2012) 217-227.[5] A.M. Dehkordi, A novel two-impinging-jets reactors for copper extraction and stripping processes, Chem. Eng. J. 87(2002) 227-238.[6] S.M. Hosseinalipour, A.S.Mujumdar, Superheated steamdrying of a single particle in an impinging stream dryer, Dry. Technol. 13(1995) 1279-1303.[7] J.L. Lap?ik, M. Fraštik, B. Lap?ikova, Impinging jet study of the deposition of colloidal particles on modified polycarbonate and poly(ethylene terephthalate) surfaces, Int. J. Heat Mass Transf. 55(2012) 1513-1518.[8] J. Eggers, E. Villermaux, Physics of liquid jets, Rep. Prog. Phys. 71(2008) 036601.[9] E. Villermaux, Fragmentation, Annu. Rev. Fluid Mech. 39(2007) 419.[10] S.W. Siddiqui, Y. Zhao, A. Kukukova, S.M. Kresta, Characteristics of a confined impinging jet reactor:Energy dissipation, homogeneous and heterogeneous reaction products, and effect of unequal flow, Ind. Eng. Chem. Res. 48(2009) 7945-7958.[11] R.J. Santos, E. Erkoc, M.M. Dias, A.M. Teixeira, J.C.B. Lopes, Hydrodynamics of the mixing chamber in RIM:PIV flow-field characterization, AICHE J. 54(2008) 1153-1163.[12] M. Icardi, E. Gavi, D.L. Marchisio, A.A. Barresi,M.G. Olsen, R.O. Fox, D. Lakehal, Investigation of the flow field in a three dimensional confined impinging jets reactor by means of microPIV and DNS, Chem. Eng. J. 166(2011) 294-305.[13] Y. Liu, M.G. Olsen, R.O. Fox, Turbulence in a microscale planar confined impingingjets reactor, Lab Chip 9(2009) 1110-1118.[14] Y. Liu, R.O. Fox, CFD predictions for chemical processing in a confined impinging-jets reactor, AICHE J. 52(2006) 731-744.[15] Y.X. Shi, V. Somashekar, R.O. Fox, M.G. Olsen, Visualization of turbulent reactive mixing in a planar microscale confined impinging-jet reactor, J. Micromech. Microeng. 21(2011) 115006.[16] S.J. Jung, S.D. Hoath, G.D. Martin, I.M. Hutchings, Atomization patterns produced by the oblique collision of two Newtonian liquid jets, Phys. Fluids 22(2010) 042101.[17] R. Li, N. Ashgriz, Characteristics of liquid sheets formed by two impinging jets, Phys. Fluids 18(2006) 087104.[18] G. Taylor, The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets, Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 253(1959) 313-321.[19] R.J. Demyanovich, J.R. Bourne, Rapid micromixing by the impingement of thin liquid sheets. 2. mixing study, Am. Chem. Soc. 28(1989) 830-839.[20] S.B. Pope, Turbulent flows, Cambridge University Press, Cambridge, 2000.[21] C.P. Fronte, M.A. Sultan, R.J. Santos, M.M. Dias, J.C.B. Lopes, Flow imbalance and Reynolds number impact on mixing in confined impinging jets, Chem. Eng. J. 260(2015) 316-330.[22] Z.M. Gao, J. Han, Y.D. Xu, Y.Y. Bao, Z.P. Li, Particle image velocimetry (PIV) investigation of flow characteristics in confined impinging jet reactors, Ind. Eng. Chem. Res. 52(2013) 11779-11786.[23] R.P. Lindstedt, D.S. Luff, J.H.Whitelaw, Velocity and strain-rate characteristics of opposed isothermal flows, Flow Turbul. Combust. 74(2005) 169-194.[24] J.W.M. Bush, A.E. Hasha, On the collision of laminar jets:Fluid chains and fishbones, J. Fluid Mech. 511(2004) 285-310.[25] A.J. Mahajan, D.J. Kirwan, Micromixing effects in a two-impinging-jets precipitator, AICHE J. 42(1996) 1801-1814.[26] W.F. Li, Z.G. Sun, H.F. Liu, F.C. Wang, Z.H. Yu, Experimental and numerical study on stagnation point offset of turbulent opposed jets, Chem. Eng. J. 138(2008) 283-294.[27] W.F. Li, T.L. Yao, F.C. Wang, Study on factors influencing stagnation point offset of turbulent opposed jets, AICHE J. 56(2010) 2513-2522.[28] D.A. Johnson, Experimental and numerical examination of confined laminar opposed jets. Part I. Momentum imbalance, Heat Mass Transf. 27(2000) 444-453.[29] H. Feng, M.G. Olsen, Y. Liu, R.O. Fox, J.C. Hill, Investigation of turbulent mixing in a confined planar-jet reactor, AICHE J. 51(2005) 2649-2664.[30] R.O. Fox, Computational models for turbulent reacting flows, Cambridge University Press, Cambridge, 200335-39.[31] E. Gavi, D.L. Marchisio, A.A. Barresi, M.G. Olsen, R.O. Fox, Turbulent precipitation in micromixers:CFD simulation and flow field validation, Chem. Eng. Res. Des. 88(2010) 1182-1193.[32] F.R. Khan, C.D. Rielly, D.A.R. Brown, Angle-resolved stereo-PIV measurements close to a down-pumping pitched-blade turbine, Chem. Eng. Sci. 61(2006) 2799-2806.[33] J. Sheng, H. Meng, R.O. Fox, A large eddy PIV method for turbulence dissipation rate estimation, Chem. Eng. Sci. 55(2000) 4423-4434.[34] Z.P. Li,M.T. Hu, Y.Y. Bao, Z.M. Gao, Particle image velocimetry experiments and large eddy simulations of merging flow characteristics in dual Rushton turbine stirred tanks, Ind. Eng. Chem. Res. 51(2012) 2438-2450.[35] F.Q. Bai, H. Diao, M.Z. Zhang, Q. Chang, E.D. Wang, Q. Du, Breakup characteristics of power-law liquid sheets formed by two impinging jets, Fluid Dyn. Res. 46(2014) 055506.[36] Y.J. Choo, B.S. Kang, The velocity distribution of the liquid sheet formed by two lowspeed impinging jets, Phys. Fluids 14(2002) 622-627.[37] J. Zhang, Y.Z. Liu,W.Z. Jiao, G.S. Qi, Flow characteristics in a three impinging jets reactor, Chin. J. Process. Eng. 15(2015) 218-223(in Chinese). |