[1] S. Wang, Y. Luo, Z. Zhao, et al., Debates on the cause of global warming, Adv. Clim. Chang. Res. 7(2) (2011) 79-84(in Chinese). [2] J.T. Houghton, Y. Ding, D.J. Griggs, et al., Climate Change 2001:The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the IntergovernmentaPanel on Climate Change, Cambridge University Press, Cambridge, UK, and New York, USA, 2001. [3] S.F. Singer, Nature, not human activity, rules the climate:Summary for policymakers of the report of the nongovernmental, International Panel on Climate Change, The Heartland Institute, Chicago, 2008. [4] K.C. Meng, R.H.Williams, M.A. Celia, Opportunities for low-cost CO2 storage demonstration projects in China, Energ Policy 35(4) (2007) 2368-2378. [5] Z. Ma, l. Wang, Technical progress of emission-reduction and utilization of carbon dioxide in cement industry, Mater. Rev. 25(10) (2011) 150-154. [6] D. Britt, H. Furukawa, B.Wang, et al., Highly efficient separation of carbon dioxide by a metal-organic frame-work replete with open metal sites, Proc. Natl. Acad. Sci. 106(49) (2009) 20637-20640. [7] Y.S. Bae, K.L. Mulfort, H. Frost, et al., Separation of CO2 from CH4 using mixed-lig and metal-organic frame-works, Langmuir 24(16) (2008) 8592-8598. [8] A.R. Millward, O.M. Yaghi, Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature, J. Am. Chem. Soc. 127(51) (2005) 17998-17999. [9] P.D.C. Dietzel, R.E. Johnsen, H. Fjellvag, et al., Adsorption properties and structure of CO2 adsorbed on open coordination sites of metal-organic framework Ni2(dhtp) from gas adsorption, Ir spectroscopy and X-ray diffraction, Chem. Commun. 41(2008) 5125-5127. [10] P.D.C. Dietzel, V. Besikiotis, R. Blom, Application of metal-organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide, J. Mater. Chem. 19(39) (2009) 7362-7370. [11] A.O.Z.R. Yazaydm, A.I. Benin, S.A. Faheem, et al., Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules, Chem. Mater. 21(18) (2009) 1425-1430. [12] H. Li, W. Yang, Y. Duan, Experiment of CO2 capture based on Ca-based sorbents cyclic calcination/carbonation reaction, Bull. Chin. Ceram. Soc. 32(2) (2013) 356-362(in chinese). [13] A. Antzaraa, E. Heracleous, A.A. Lemonidou, Improving the stability of synthetic CaObased CO2 sorbents by structural promoters, Appl. Energy 156(2015) 331-343. [14] H. Yang, Z. Xu, M. Fan, et al., Progress in carbon dioxide separation and capture:A review, J. Environ. Sci. 20(2008) 14-17. [15] D. Karami, N.Mahinpey, Highly active CaO-based sorbents for CO2 capture using the precipitation method:Preparation and characterization of the sorbent powder, Ind. Eng. Chem. Res. 51(12) (2012) 4567-4572. [16] C. Stewart, M.A. Hessami, A study of methods of carbon dioxide capture and sequestration-the sustainability of a photosynthetic bioreactor approach, Energy Convers. Manag. 46(3) (2005) 403-420. [17] C. Salvador, D. Lu, E.J. Anthony, et al., Enhancement of CaO for CO2 capture in an fbc environment, Chem. Eng. J. 96(1/3) (2003) 187-195. [18] H. Gupta, L.S. Fan, Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas, Ind. Eng. Chem. Res. 41(16) (2002) 4035-4042. [19] D. Dasgupta, K.Mondal, T.Wiltowski, Robust, high reactivity and enhanced capacity carbon dioxide removal agents for hydrogen production applications, Int. J. Hydrog. Energy 33(1) (2008) 303-311. [20] Y. Li, C. Zhao, C. Qu, et al., CO2 capture using CaO modified with ethanol/water solution during cyclic calcination/carbonation, Chem. Eng. Technol. 31(2) (2008) 237-244. [21] Y. Li, C. Zhao, H. Chen, et al., Modified CaO-based sorbent looping cycle for CO2 mitigation, Fuel 88(4) (2009) 697-704. [22] V. Manovic, D. Lu, E.J. Anthony, Steam hydration of sorbents from a dual fluidized bed CO2 looping cycle reactor, Fuel 87(15/16) (2008) 3344-3352. [23] Z. Li, N. Cai, Y. Huang, et al., Synthesis, experimental studies, and analysis of a new calcium-based carbon dioxide absorbent, Energy Fuel 19(4) (2005) 1447-1452. [24] C.S. Martavaltzi, A.A. Lemonidou, Parametric study of the CaO-Ca12Al14O33 synthesis with respect to high CO2 sorption capacity and stability onmulticycle operation, Ind. Eng. Chem. Res. 47(23) (2008) 9537-9543. [25] Z. Li, N. Cai, Y. Huang, Effect of preparation temperature on cyclic CO2 capture and multiple carbonation-calcination cycles for a new Ca-based CO2 sorbent, Ind. Eng. Chem. Res. 45(6) (2006) 1911-1917. [26] F. Zeman, Effect of steam hydration on performance of lime sorbent for CO2 capture, Int. J. Greenh. Gas Control 2(2008) 203-209. [27] R. Sun, Y. Li, H. Liu, et al., CO2 capture performance of calcium-based sorbent doped with manganese salts during calcium looping cycle, Appl. Energy 89(2012) 368-373. [28] Y. Li, C. Zhao, H. Chen, Variation behavior of CaO microstructure during cyclic calcination/carbonation, J. Southeast Univ. (Nat. Sci. Ed.) 39(2) (2009) 262-268(in Chinese). [29] Z. Li, F. Fang, N. Cai, Experimental research on CaO carbonation/calcination cycles in fluidized bed, J. Combust. Sci. Technol. 14(6) (2008) 529-532(in Chinese). [30] V. Manovic, E.J. Anthony, Thermal activation of CaO-based sorbent and selfreactivation during CO2 capture looping cycles, Environ. Sci. Technol. 42(2008) 4170-4180. [31] Y. Guo, C. Zhao, X. Chen, C. Li, CO2 capture and sorbent regeneration performances of some wood ash materials, Appl. Energy 137(2015) 26-36. [32] H. Chen, C. Zhao,W. Yu, Calcium-based sorbent doping with attapulgite for CO2 capture, Appl. Energy 112(2013) 67-74(in Chinese). [33] G. Wei, C. Zhang, C. Guoliang, et al., Study on archaeological lime powders from Taosi and Yinxu sites by FTIR, Spectrosc. Spectr. Anal. 35(3) (2015) 613-616(in Chinese). [34] W.C. Yan, D. Liu, D.Y. Tan, et al., FTIR spectroscopy study of the structure changes of palygorskite under heating, Spectrochim. Acta A Mol. Biomol. 97(2012) 1052-1057. |