[1] A. Salahi, M. Abbasi, T. Mohammadi, Permeate flux decline during UF of oily wastewater:Experimental and modeling, Desalination 251(1) (2010) 153-160. [2] J. Hermia, Constant pressure blocking filtration law application to powder-law nonNewtonian fluid, Trans. Inst. Chem. Eng. 60(1982) 183-187. [3] K.-J. Hwang, T.-T. Lin, Effect of morphology of polymeric membrane on the performance of cross-flow microfiltration, J. Membr. Sci. 199(1) (2002) 41-52. [4] M.C.V. Vela, S.Á. Blanco, J.L. García, E.B. Rodríguez, Analysis of membrane pore blocking models applied to the ultrafiltration of PEG, Sep. Purif. Technol. 62(3) (2008) 489-498. [5] A. Salahi, A. Gheshlaghi, T. Mohammadi, S.S. Madaeni, Experimental performance evaluation of polymeric membranes for treatment of an industrial oily wastewater, Desalination 262(1) (2010) 235-242. [6] T. Mohammadi, M. Kazemimoghadam, M. Saadabadi, Modeling of membrane fouling and flux decline in reverse osmosis during separation of oil in water emulsions, Desalination 157(1) (2003) 369-375. [7] Y. Pan, W. Wang, T. Wang, P. Yao, Fabrication of carbon membrane and microfiltration of oil-in-water emulsion:An investigation on fouling mechanisms, Sep. Purif. Technol. 57(2) (2007) 388-393. [8] T. Arnot, R. Field, A. Koltuniewicz, Cross-flow and dead-end microfiltration of oilywater emulsions:Part Ⅱ. Mechanisms and modelling of flux decline, J. Membr. Sci. 169(1) (2000) 1-15. [9] M.C.V. Vela, S.Á. Blanco, J.L. García, E.B. Rodríguez, Analysis of membrane pore blocking models adapted to crossflow ultrafiltration in the ultrafiltration of PEG, Chem. Eng. J. 149(1) (2009) 232-241. [10] E.-E. Chang, S.-Y. Yang, C.-P. Huang, C.-H. Liang, P.-C. Chiang, Assessing the fouling mechanisms of high-pressure nanofiltration membrane using the modified Hermia model and the resistance-in-series model, Sep. Purif. Technol. 79(3) (2011) 329-336. [11] E.-E. Chang, Y.-C. Chang, C.-H. Liang, C.-P. Huang, P.-C. Chiang, Identifying the rejection mechanism for nanofiltration membranes fouled by humic acid and calcium ions exemplified by acetaminophen, sulfamethoxazole, and triclosan, J. Hazard. Mater. 221(2012) 19-27. [12] I.N.H.M. Amin, A.W. Mohammad, M. Markom, L.C. Peng, N. Hilal, Analysis of deposition mechanism during ultrafiltration of glycerin-rich solutions, Desalination 261(3) (2010) 313-320. [13] N. Shafaei, M. Peyravi, M. Jahanshahi, G. Najafpour, Self-cleaning behavior of nanocomposite membrane induced by photocatalytic WO3 nanoparticles for landfill leachate treatment, Korean J. Chem. Eng. 33(10) (2016) 2968-2981. [14] G. Romanos, C. Athanasekou, V. Likodimos, P. Aloupogiannis, P. Falaras, Hybrid ultrafiltration/photocatalytic membranes for efficient water treatment, Ind. Eng. Chem. Res. 52(39) (2013) 13938-13947. [15] A. Rahimpour, S. Madaeni, A. Taheri, Y. Mansourpanah, Coupling TiO2 nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes, J. Membr. Sci. 313(1) (2008) 158-169. [16] O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem. 32(1) (2004) 33-177. [17] P. Ragesh, V.A. Ganesh, S.V. Nair, A.S. Nair, A review on ‘self-cleaning and multifunctional materials’, J. Mater. Chem. A 2(36) (2014) 14773-14797. [18] S. Chakrabarti, B.K. Dutta, Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst, J. Hazard. Mater. 112(3) (2004) 269-278. [19] I.P. Parkin, R.G. Palgrave, Self-cleaning coatings, J. Mater. Chem. 15(17) (2005) 1689-1695. [20] C. Duclos-Orsello, W. Li, C.-C. Ho, A three mechanism model to describe fouling of microfiltration membranes, J. Membr. Sci. 280(1) (2006) 856-866. [21] G. Bolton, D. LaCasse, R. Kuriyel, Combined models of membrane fouling:Development and application to microfiltration and ultrafiltration of biological fluids, J. Membr. Sci. 277(1) (2006) 75-84. [22] C.-C. Ho, A.L. Zydney, A combined pore blockage and cake filtration model for protein fouling during microfiltration, J. Colloid Interface Sci. 232(2) (2000) 389-399. [23] A. Asatekin, S. Kang, M. Elimelech, A.M. Mayes, Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly (ethylene oxide) comb copolymer additives, J. Membr. Sci. 298(1) (2007) 136-146. [24] S. Brownlow, J.H.M. Cabral, R. Cooper, D.R. Flower, S.J. Yewdall, I. Polikarpov, A.C.T. North, L. Sawyer, Bovine β-lactoglobulin at 1.8Å resolution-Still an enigmatic lipocalin, Structure 5(4) (1997) 481-495. [25] M. Peyravi, A. Rahimpour, M. Jahanshahi, Thin film composite membranes with modified polysulfone supports for organic solvent nanofiltration, J. Membr. Sci. 423-424(2012) 225-237. [26] H. Yu, X. Zhang, Y. Zhang, J. Liu, H. Zhang, Development of a hydrophilic PES ultrafiltration membrane containing SiO2@N-Halamine nanoparticles with both organic antifouling and antibacterial properties, Desalination 326(2013) 69-76. [27] S. Madaeni, N. Ghaemi, Characterization of self-cleaning RO membranes coated with TiO2 particles under UV irradiation, J. Membr. Sci. 303(1) (2007) 221-233. [28] H. Irie, K. Hashimoto, Photocatalytic active surfaces and photo-induced high hydrophilicity/high hydrophobicity, Environmental Photochemistry Part Ⅱ, Springer 2005, pp. 425-450. [29] S. You, C. Wu, Fouling removal of UF membrane with coated TiO2 nanoparticles under UV irradiation for effluent recovery during TFT-LCD manufacturing, Int. J. Photoenergy 2013(2013). [30] C. Liu, S. Caothien, J. Hayes, T. Caothuy, T. Otoyo, T. Ogawa, Membrane Chemical Cleaning:From Art to Science, Pall Corporation, Port Washington, NY 11050, 2001. [31] K. Guan, Relationship between photocatalytic activity, hydrophilicity and selfcleaning effect of TiO2/SiO2 films, Surf. Coat. Technol. 191(2) (2005) 155-160. [32] M. Peyravi, A. Rahimpour, M. Jahanshahi, Developing nanocomposite PI membranes:Morphology and performance to glycerol removal at the downstream processing of biodiesel production, J. Membr. Sci. 473(2015) 72-84. [33] Y. Yang, H. Zhang, P. Wang, Q. Zheng, J. Li, The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane, J. Membr. Sci. 288(1) (2007) 231-238. [34] N. Hilal, M. Khayet, C.J. Wright, Membrane Modification:Technology and Applications, Taylor & Francis, New York, 2012. [35] Y.S. Al-Degs, A.H. El-Sheikh, M.A. Al-Ghouti, B. Hemmateenejad, G.M. Walker, Solidphase extraction and simultaneous determination of trace amounts of sulphonated and azo sulphonated dyes using microemulsion-modified-zeolite and multivariate calibration, Talanta 75(4) (2008) 904-915. [36] T. Jiang, M.D. Kennedy, W.G. van der Meer, P.A. Vanrolleghem, J.C. Schippers, The role of blocking and cake filtration in MBR fouling, Desalination 157(1) (2003) 335-343. [37] Z. Wang, J. Ma, C.Y. Tang, K. Kimura, Q. Wang, X. Han, Membrane cleaning in membrane bioreactors:A review, J. Membr. Sci. 468(2014) 276-307. [38] M. Peyravi, A. Rahimpour, M. Jahanshahi, A. Javadi, A. Shockravi, Tailoring the surface properties of PES ultrafiltration membranes to reduce the fouling resistance using synthesized hydrophilic copolymer, Microporous Mesoporous Mater. 160(2012) 114-125. [39] I. Axelsson, Characterization of proteins and other macromolecules by agarose gel chromatography, J. Chromatogr. A 152(1) (1978) 21-32. [40] S.A. Patil, V.V. Ahire, M.H. Hussain, Dairy wastewater-A case study, Int. J. Res. Eng. Technol. 03(09) (2014) 30-34. [41] T.V. Adulkar, V.K. Rathod, Ultrasound assisted enzymatic pre-treatment of high fat content dairy wastewater, Ultrason. Sonochem. 21(3) (2014) 1083-1089. [42] B. Demirel, O. Yenigun, T.T. Onay, Anaerobic treatment of dairy wastewaters:A review, Process Biochem. 40(8) (2005) 2583-2595. [43] S.T. Kelly, A.L. Zydney, Mechanisms for BSA fouling during microfiltration, J. Membr. Sci. 107(1) (1995) 115-127. [44] S.T. Kelly, W.S. Opong, A.L. Zydney, The influence of protein aggregates on the fouling of microfiltration membranes during stirred cell filtration, J. Membr. Sci. 80(1) (1993) 175-187. |