[1] M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0℃, Chem. Lett. 6(1987) 405-408.[2] M. Haruta, M. Date, Advances in the catalysis of Au nanoparticles, Appl. Catal. A Gen. 222(2001) 427-437.[3] A.S.K. Hashmi, G.J. Hutchings, Gold catalysis, Angew. Chem. Int. Ed. 45(2006) 7896-7936.[4] A. Corma, H. Garcia, Supported gold nanoparticles as catalysts for organic reactions, Chem. Soc. Rev. 37(2008) 2096-2126.[5] Y. Zhang, X. Cui, F. Shi, Y. Deng, Nano-gold catalysis in fine chemical synthesis, Chem. Rev. 112(2012) 2467-2505.[6] M. Stratakis, H. Garcia, Catalysis by supported gold nanoparticles:beyond aerobic oxidative processes, Chem. Rev. 112(2012) 4469-4506.[7] M.M. Schubert, S. Hackenberg, A.C. van Veen, M. Muhler, V. Plzak, R.J. Behm, CO oxidation over supported gold catalysts-"inert" and "active" support materials and their role for the oxygen supply during reaction, J. Catal. 197(2001) 113-122.[8] S.H. Overbury, L. Ortiz-Soto, H.G. Zhu, B. Lee, M.D. Amiridis, S. Dai, Comparison of Au catalysts supported on mesoporous titania and silica:investigation of Au particle size effects and metal-support interactions, Catal. Lett. 95(2004) 99-106.[9] Z. Ma, S. Dai, Development of novel supported gold catalysts:a materials perspective, Nano Res. 4(2011) 3-32.[10] L.C. Wang, Y.M. Liu, M. Chen, Y. Cao, H.Y. He, K.N. Fan, MnO2 nanorod supported gold nanoparticles with enhanced activity for solvent-free aerobic alcohol oxidation, J. Phys. Chem. C 112(2008) 6981-6987.[11] R. Si, M. Flytzani-Stephanopoulos, Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction, Angew. Chem. Int. Ed. 47(2008) 2884-2887.[12] X.-S. Huang, H. Sun, L.-C. Wang, Y.-M. Liu, K.-N. Fan, Y. Cao, Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation, Appl. Catal. B Environ. 90(2009) 224-232.[13] G.Q. Yi, H.W. Yang, B.D. Li, H.Q. Lin, K. Tanaka, Y.Z. Yuan, Preferential CO oxidation in a H2-rich gas by Au/CeO2 catalysts nanoscale CeO2 shape effect and mechanism aspect, Catal. Today 157(2010) 83-88.[14] W.F. Yan, S. Brown, Z.W. Pan, S.M. Mahurin, S.H. Overbury, S. Dai, Ultrastable gold nanocatalyst supported by nanosized non-oxide substrate, Angew. Chem. Int. Ed. 45(2006) 3614-3618.[15] Z. Ma, H.F. Yin, S.H. Overbury, S. Dai, Metal phosphates as a new class of supports for gold nanocatalysts, Catal. Lett. 126(2008) 20-30.[16] Z. Ma, H.F. Yin, S. Dai, Influence of preparation methods on the performance of metal phosphate-supported gold catalysts in CO oxidation, Catal. Lett. 138(2010) 40-45.[17] M. Li, Z. Wu, S.H. Overbury, CO oxidation on phosphate-supported Au catalysts:effect of support reducibility on surface reactions, J. Catal. 278(2011) 133-142.[18] H. Liu, Y. Lin, Z. Ma, Au/LaPO4 nanowires:synthesis, characterization, and catalytic CO oxidation, J. Taiwan Inst. Chem. Eng. 62(2016) 275-282.[19] X.S. Qian, H.M. Qin, T. Meng, Y. Lin, Z. Ma, Metal phosphate-supported Pt catalysts for CO oxidation, Materials 7(2014) 8105-8130.[20] B. Pan, S.J. Luo, W.Y. Su, X.X. Wang, Photocatalytic CO2 reduction with H2O over LaPO4 nanorods deposited with Pt cocatalyst, Appl. Catal. B Environ. 168(2015) 458-464.[21] H. Tamai, T. Ikeya, F. Nishiyama, H. Yasuda, K. Iida, S. Nojima, NO decomposition by ultrafine noble metals dispersed on the rare earth phosphate hollow particles, J. Mater. Sci. 35(2000) 4945-4953.[22] Y. Lin, T. Meng, Z. Ma, Catalytic decomposition of N2O over RhOx supported on metal phosphates, J. Ind. Eng. Chem. 28(2015) 138-146.[23] M. Machida, T. Eidome, S. Minami, H.P. Buwono, S. Hinokuma, Y. Nagao, Y. Nakahara, Tuning the electron density of Rh supported on metal phosphates for three-way catalysis, J. Phys. Chem. C 119(2015) 11653-11661.[24] H. Liu, Z. Ma, Effect of different LaPO4 supports on the catalytic performance of Rh2O3/LaPO4 in N2O decomposition and CO oxidation, J. Taiwan Inst. Chem. Eng. 71(2017) 373-380.[25] H. Sun, F.Z. Su, J. Ni, Y. Cao, H.Y. He, K.N. Fan, Gold supported on hydroxyapatite as a versatile multifunctional catalyst for the direct tandem synthesis of imines and oximes, Angew. Chem. Int. Ed. 48(2009) 4390-4393.[26] M.I. Dominguez, F. Romero-Sarria, M.A. Centeno, J.A. Odriozola, Gold/hydroxyapatite catalysts synthesis, characterization and catalytic activity to CO oxidation, Appl. Catal. B Environ. 87(2009) 245-251.[27] J. Huang, L.-C. Wang, Y.-M. Liu, Y. Cao, H.-Y. He, K.-N. Fan, Gold nanoparticles supported on hydroxylapatite as high performance catalysts for low temperature CO oxidation, Appl. Catal. B Environ. 101(2011) 560-569.[28] Y.M. Liu, H. Tsunoyama, T. Akita, S.H. Xie, T. Tsukuda, Aerobic oxidation of cyclohexane catalyzed by size-controlled au clusters on hydroxyapatite:size effect in the sub-2 nm regime, ACS Catal. 1(2011) 2-6.[29] C.Y. Huang, Z. Ma, P.F. Xie, Y.H. Yue, W.M. Hua, Z. Gao, Hydroxyapatite-supported rhodium catalysts for N2O decomposition, J. Mol. Catal. A Chem. 400(2015) 90-94.[30] C.Y. Huang, Y.X. Jiang, Z. Ma, P.F. Xie, Y. Lin, T. Meng, C.X. Miao, Y.H. Yue, W.M. Hua, Z. Gao, Correlation among preparation methods/conditions, physicochemical properties, and catalytic performance of Rh/hydroxyapatite catalysts in N2O decomposition, J. Mol. Catal. A Chem. 420(2016) 73-81.[31] A. Venugopal, M.S. Scurrell, Hydroxyapatite as a novel support for gold and ruthenium catalysts:behaviour in the water gas shift reaction, Appl. Catal. A Gen. 245(2003) 137-147.[32] C. Mondelli, D. Ferri, A. Baiker, Ruthenium at work in Ru-hydroxyapatite during the aerobic oxidation of benzyl alcohol:an in situ ATR-IR spectroscopy study, J. Catal. 258(2008) 170-176.[33] Y.W. Cui, H. Liu, Y. Lin, Z. Ma, Metal phosphate-supported RuOx catalysts for N2O decomposition, J. Taiwan Inst. Chem. Eng. 67(2016) 254-262.[34] H. Onoda, H. Nariai, A. Moriwaki, H. Maki, I. Motooka, Formation and catalytic characterization of various rare earth phosphates, J. Mater. Chem. 12(2002) 1754-1760.[35] Y. Takita, X. Qing, A. Takami, H. Nishiguchi, K. Nagaoka, Oxidative dehydrogenation of isobutane to isobutene Ⅲ:reaction mechanism over CePO4 catalyst, Appl. Catal. A Gen. 296(2005) 63-69.[36] X.L. Weng, R.J. Mei, M.P. Shi, Q.Y. Kong, Y. Liu, Z.B. Wu, CePO4 catalyst for elemental mercury removal in simulated coal-fired flue gas, Energy Fuel 29(2015) 3359-3365.[37] W.Y. Yao, Y. Liu, X.Q. Wang, X.L. Weng, H.Q. Wang, Z.B. Wu, The superior performance of sol-gel made Ce-O-P catalyst for selective catalytic reduction of NO with NH3, J. Phys. Chem. C 120(2016) 221-229.[38] F. Romero-Sarria, M.I. Dominguez, M.A. Centeno, J.A. Odriozola, CO oxidation at low temperature on Au/CePO4:mechanistic aspects, Appl. Catal. B Environ. 107(2011) 268-273.[39] J. Kang, S. Byun, S. Nam, S. Kang, T. Moon, B. Park, Synergistic improvement of oxygen reduction reaction on gold/cerium-phosphate catalysts, Int. J. Hydrog. Energy 39(2014) 10921-10926.[40] J. Park, Y. Oh, Y. Park, S. Nam, J. Moon, J. Kang, D.-R. Jung, S. Byun, B. Park, Methanol oxidation in nanostructured platinum/cerium-phosphate thin films, Curr. Appl. Phys. 11(2011) S2-S5.[41] Y.J. Zhang, J.H. Wang, T. Zhang, Novel Ca-doped CePO4 supported ruthenium catalyst with superiorcatalyticperformancefor aerobic oxidation ofalcohols, Chem. Commun. 47(2011) 5307-5309.[42] H. Liu, Z. Ma, Rh2O3/monoclinic CePO4 composite catalysts for N2O decomposition and CO oxidation, Chin. J. Chem. Eng. (2017) https://doi.org/10.1016/j.cjche.2017.02.007(in press).[43] H. Liu, Z. Ma, Rh2O3/hexagonal CePO4 nanocatalysts for N2O decomposition, Front. Chem. Sci. Eng. (2017) https://doi.org/10.1017/s11705-017-1659-6(in press).[44] S. Lucas, E. Champion, D. Bregiroux, D. Bernache-Assollant, F. Audubert, Rare earth phosphate powders RePO4·nH2O (Re=La, Ce or Y)-part I. Synthesis and characterization, J. Solid State Chem. 177(2004) 1302-1311.[45] Y.P. Fang, A.W. Xu, R.Q. Song, H.X. Zhang, L.P. You, J.C. Yu, H.Q. Liu, Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires, J. Am. Chem. Soc. 125(2003) 16025-16034.[46] M.H. Cao, C.W. Hu, Q.Y. Wu, C.X. Guo, Y.J. Qi, E.B. Wang, Controlled synthesis of LaPO4 and CePO4 nanorods/nanowires, Nanotechnology 16(2005) 282-286.[47] Q.J. Zheng, X. Wang, J.T. Tian, R. Kang, Y.S. Yin, Synthesis and characterization of LaPO4 powder heat treated at various temperatures, Mater. Chem. Phys. 122(2010) 49-52.[48] D. Palma-Ramirez, M.A. Dominguez-Crespo, A.M. Torres-Huerta, H. DorantesRosales, E. Ramirez-Meneses, E. Rodriguez, Microwave-assisted hydrothermal synthesis of CePO4 nanostructures:correlation between the structural and optical properties, J. Alloys Compd. 643(2015) S209-S218.[49] M. Haruta, When gold is not noble:catalysis by nanoparticles, Chem. Rec. 3(2003) 75-87.[50] R. Zanella, L. Delannoy, C. Louis, Mechanism of deposition of gold precursors onto TiO2 during the preparation by cation adsorption and deposition-precipitation with NaOH and urea, Appl. Catal. A Gen. 291(2005) 62-72.[51] M. Khoudiakov, M.C. Gupta, S. Deevi, Au/Fe2O3 nanocatalysts for CO oxidation:a comparative study of deposition-precipitation and coprecipitation techniques, Appl. Catal. A Gen. 291(2005) 151-161.[52] S. Royer, D. Duprez, Catalytic oxidation of carbon monoxide over transition metal oxides, ChemCatChem 3(2011) 24-65.[53] F.Y. Lu, Y.Q. Shen, X. Sun, Z.L. Dong, R.C. Ewing, J. Lian, Size dependence of radiationinduced amorphization and recrystallization of synthetic nanostructured CePO4 monazite, Acta Mater. 61(2013) 2984-2992.[54] Y.J. Zhang, H.M. Guan, Hydrothermal synthesis and characterization of hexagonal and monoclinic CePO4 single-crystal nanowires, J. Cryst. Growth 256(2003) 156-161.[55] W.F. Yan, S.M. Mahurin, Z.W. Pan, S.H. Overbury, S. Dai, Ultrastable Au nanocatalyst supported on surface-modified TiO2 nanocrystals, J. Am. Chem. Soc. 127(2005) 10480-10481.[56] Z. Ma, S.H. Overbury, S. Dai, Au/MxOy/TiO2 catalysts for CO oxidation:promotional effect of main-group, transition, and rare-earth metal oxide additives, J. Mol. Catal. A Chem. 273(2007) 186-197.[57] E.A. Willneff, S. Braun, D. Rosenthal, H. Bluhm, M. Havecker, E. Kleimenov, A. KnopGericke, R. Schlogl, S.L.M. Schroeder, Dynamic electronic structure of a Au/TiO2 catalyst under reaction conditions, J. Am. Chem. Soc. 128(2006) 12052-12053.[58] H.Y. Xu, W. Chu, J.J. Luo, M. Liu, New Au/FeOx/SiO2 catalysts using depositionprecipitation for low-temperature carbon monoxide oxidation, Catal. Commun. 11(2010) 812-815.[59] J.M.C. Soares, P. Morrall, A. Crossley, P. Harris, M. Bowker, Catalytic and noncatalytic CO oxidation on Au/TiO2 catalysts, J. Catal. 219(2003) 17-24.[60] M.C. Kung, R.J. Davis, H.H. Kung, Understanding Au-catalyzed low-temperature CO oxidation, J. Phys. Chem. C 111(2007) 11767-11775. |