Chinese Journal of Chemical Engineering ›› 2018, Vol. 26 ›› Issue (11): 2238-2254.DOI: 10.1016/j.cjche.2018.07.010
• Special issue of Carbon Capture, Utilisation and Storage • 上一篇 下一篇
Yang Han, W. S. Winston Ho
收稿日期:
2018-05-31
修回日期:
2018-07-14
出版日期:
2018-11-28
发布日期:
2018-12-10
通讯作者:
W. S. Winston Ho
Yang Han, W. S. Winston Ho
Received:
2018-05-31
Revised:
2018-07-14
Online:
2018-11-28
Published:
2018-12-10
Contact:
W. S. Winston Ho
摘要: Membrane and membrane process have been considered as one of the most promising technologies for mitigating CO2 emissions from the use of fossil fuels. In this paper, recent advances in polymeric membranes for CO2 capture are reviewed in terms of material design and membrane formation. The selected polymeric materials are grouped based on their gas transport mechanisms, i.e., solution-diffusion and facilitated transport. The discussion of solution-diffusion membranes encompasses the recent efforts to shift the upper bound barrier, including the enhanced CO2 solubility in several rubbery polymers and novel methods to construct shape-persisting macromolecules with unprecedented sieving ability. The carrier-bearing facilitated transport membranes are categorized based on the specific CO2-carrier chemistry. Finally, opportunities and challenges in practical applications are also discussed, including post-combustion carbon capture (CO2/N2), hydrogen purification (CO2/H2), and natural gas sweetening (CO2/CH4).
Yang Han, W. S. Winston Ho. Recent advances in polymeric membranes for CO2 capture[J]. Chinese Journal of Chemical Engineering, 2018, 26(11): 2238-2254.
Yang Han, W. S. Winston Ho. Recent advances in polymeric membranes for CO2 capture[J]. Chin.J.Chem.Eng., 2018, 26(11): 2238-2254.
[1] B. Metz, O. Davidson, H. De Coninck, M. Loos, L. Meyer, IPCC special report on carbon dioxide capture and storage, Prepared by Working Group Ⅲ of the Intergovernmental Panel on Climate Change, IPCC, Cambridge University Press, Cambridge, United Kingdom and New York, USA, 2005.[2] K. Ramasubramanian, Y. Zhao, W.S.W. Ho, CO2 capture and H2 purification:Prospects for CO2-selective membrane processes, AICHE J. 59(4) (2013) 1033-1045.[3] W.S.W. Ho, K.K. Sirkar, Membrane Handbook, Chapman & Hall, New York, 1992, Kluwer Academic Publishers, Boston, reprint edition, 2001.[4] J. Black, Cost and Performance Baseline for Fossil Energy Plants Volume 1:Bituminous Coal and Natural Gas to Electricity Final Report, 2nd ed. National Energy Technology Laboratory, November, 2010.[5] L. Zhao, E. Riensche, L. Blum, D. Stolten, How gas separation membrane competes with chemical absorption in postcombustion capture, Energy Procedia 4(2011) 629-636.[6] L. Zhao, E. Riensche, L. Blum, D. Stolten, Multi-stage gas separation membrane processes used in post-combustion capture:Energetic and economic analyses, J. Membr. Sci. 359(1) (2010) 160-172.[7] T. Fout, A. Zoelle, D. Keairns, M. Turner, M. Woods, N. Kuehn, V. Shah, V. Chou, L. Pinkerton, J. Black, Cost and Performance Baseline for Fossil Energy Plants Volume 1b:Bituminous Coal (IGCC) to Electricity Revision 2b-Year Dollar Update, United States Departmeant of Energy, Washington, DC, USA, 2015.[8] J.D. Wind, D.R. Paul, W.J. Koros, Natural gas permeation in polyimide membranes, J. Membr. Sci. 228(2) (2004) 227-236.[9] S. Harms, K. Rätzke, F. Faupel, N. Chaukura, P. Budd, W. Egger, L. Ravelli, Aging and free volume in a polymer of intrinsic microporosity (PIM-1), J. Adhes. 88(7) (2012) 608-619.[10] L. Robeson, B. Freeman, D. Paul, B. Rowe, An empirical correlation of gas permeability and permselectivity in polymers and its theoretical basis, J. Membr. Sci. 341(1-2) (2009) 178-185.[11] B.D. Freeman, Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes, Macromolecules 32(2) (1999) 375-380.[12] L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes, J. Membr. Sci. 62(2) (1991) 165-185.[13] L.M. Robeson, The upper bound revisited, J. Membr. Sci. 320(1) (2008) 390-400.[14] S. Janakiram, M. Ahmadi, Z. Dai, L. Ansaloni, L. Deng, Performance of nanocomposite membranes containing 0D to 2D nanofillers for CO2 separation:A review, Membranes 8(2) (2018) 24.[15] M. Wang, Z. Wang, S. Zhao, J. Wang, S. Wang, Recent advances on mixed matrix membranes for CO2 separation, Chin. J. Chem. Eng. 25(2017) 1581-1597.[16] J. Wijmans, R. Baker, The solution-diffusion model:A review, J. Membr. Sci. 107(1) (1995) 1-21.[17] V.T. Stannett, Simple gases, in:J. Crank, G.S. Park (Eds.), Diffusion in Polymers, Academic Press, New York, New York 1968, pp. 41-73.[18] G. Dong, H. Li, V. Chen, Challenges and opportunities for mixed-matrix membranes for gas separation, J. Mater. Chem. A 1(15) (2013) 4610-4630.[19] V. Bondar, B. Freeman, I. Pinnau, Gas transport properties of poly (ether-b-amide) segmented block copolymers, J. Polym. Sci. B Polym. Phys. 38(15) (2000) 2051-2062.[20] J.D. Goddard, J.S. Schultz, S.R. Suchdeo, Facilitated transport via carrier-mediated diffusion in membranes:Part Ⅱ. Mathematical aspects and analyses, AIChE J. 20(4) (1974) 625-645.[21] J.H. Meldon, P. Stroeve, C.E. Gregoire, Facilitated transport of carbon dioxide:A review, Chem. Eng. Commun. 16(1-6) (1982) 263-300.[22] P. Danckwerts, The reaction of CO2 with ethanolamines, Chem. Eng. Sci. 34(4) (1979) 443-446.[23] P.V. Kortunov, M. Siskin, L.S. Baugh, D.C. Calabro, In situ nuclear magnetic resonance mechanistic studies of carbon dioxide reactions with liquid amines in aqueous systems:New insights on carbon capture reaction pathways, Energy Fuel 29(9) (2015) 5919-5939.[24] Y. Zhao, W.S.W. Ho, Steric hindrance effect on amine demonstrated in solid polymer membranes for CO2 transport, J. Membr. Sci. 415(2012) 132-138.[25] E. Cussler, R. Aris, A. Bhown, On the limits of facilitated diffusion, J. Membr. Sci. 43(2) (1989) 149-164.[26] F. Rindfleisch, T.P. DiNoia, M.A. McHugh, Solubility of polymers and copolymers in supercritical CO2, J. Phys. Chem. 100(38) (1996) 15581-15587.[27] H. Lin, B.D. Freeman, Materials selection guidelines for membranes that remove CO2 from gas mixtures, J. Mol. Struct. 739(1-3) (2005) 57-74.[28] L. Zhu, B.R. Mimnaugh, Q. Ge, R.P. Quirk, S.Z. Cheng, E.L. Thomas, B. Lotz, B.S. Hsiao, F. Yeh, L. Liu, Hard and soft confinement effects on polymer crystallization in microphase separated cylinder-forming PEO-b-PS/PS blends, Polymer 42(21) (2001) 9121-9131.[29] W. Yave, A. Car, S.S. Funari, S.P. Nunes, K.-V. Peinemann, CO2-philic polymer membrane with extremely high separation performance, Macromolecules 43(1) (2009) 326-333.[30] S.H. Ahn, S.J. Kim, D.K. Roh, H.-K. Lee, B. Jung, J.H. Kim, Controlling gas permeability of a graft copolymer membrane using solvent vapor treatment, Macromol. Res. 22(2) (2014) 160-164.[31] S.R. Reijerkerk, A.C. IJzer, K. Nijmeijer, A. Arun, R.J. Gaymans, M. Wessling, Subambient temperature CO2 and light gas permeation through segmented block copolymers with tailored soft phase, ACS Appl. Mater. Interfaces 2(2) (2010) 551-560.[32] S. Luo, K.A. Stevens, J.S. Park, J.D. Moon, Q. Liu, B.D. Freeman, R. Guo, Highly CO2-selective gas separation membranes based on segmented copolymers of poly(ethylene oxide) reinforced with pentiptycene-containing polyimide hard segments, ACS Appl. Mater. Interfaces 8(3) (2016) 2306-2317.[33] J. Xia, S. Liu, T.-S. Chung, Effect of end groups and grafting on the CO2 separation performance of poly(ethylene glycol) based membranes, Macromolecules 44(19) (2011) 7727-7736.[34] W. Yave, H. Huth, A. Car, C. Schick, Peculiarity of a CO2-philic block copolymer confined in thin films with constrained thickness:"A super membrane for CO2-capture", Energy Environ. Sci. 4(11) (2011) 4656-4661.[35] B. Xue, X. Li, L. Gao, M. Gao, Y. Wang, L. Jiang, CO2-selective free-standing membrane by self-assembly of a UV-crosslinkable diblock copolymer, J. Mater. Chem. 22(21) (2012) 10918-10923.[36] S. Feng, J. Ren, K. Hua, H. Li, X. Ren, M. Deng, Poly(amide-12-b-ethylene oxide)/polyethylene glycol blend membranes for carbon dioxide separation, Sep. Purif. Technol. 116(2013) 25-34.[37] W. Yave, A. Car, K.-V. Peinemann, Nanostructured membrane material designed for carbon dioxide separation, J. Membr. Sci. 350(1-2) (2010) 124-129.[38] S.R. Reijerkerk, M. Wessling, K. Nijmeijer, Pushing the limits of block copolymer membranes for CO2 separation, J. Membr. Sci. 378(1-2) (2011) 479-484.[39] Y. Chen, B. Wang, L. Zhao, P. Dutta, W.S.W. Ho, New Pebax®/zeolite Y composite membranes for CO2 capture from flue gas, J. Membr. Sci. 495(2015) 415-423.[40] J.M. Scofield, P.A. Gurr, J. Kim, Q. Fu, S.E. Kentish, G.G. Qiao, Development of novel fluorinated additives for high performance CO2 separation thin-film composite membranes, J. Membr. Sci. 499(2016) 191-200.[41] H. Lin, E. Van Wagner, J.S. Swinnea, B.D. Freeman, S.J. Pas, A.J. Hill, S. Kalakkunnath, D.S. Kalika, Transport and structural characteristics of crosslinked poly(ethylene oxide) rubbers, J. Membr. Sci. 276(1-2) (2006) 145-161.[42] H. Lin, E. Van Wagner, R. Raharjo, B.D. Freeman, I. Roman, High-performance polymer membranes for natural-gas sweetening, Adv. Mater. 18(1) (2006) 39-44.[43] V.A. Kusuma, B.D. Freeman, S.L. Smith, A.L. Heilman, D.S. Kalika, Influence of TRISbased co-monomer on structure and gas transport properties of cross-linked poly (ethylene oxide), J. Membr. Sci. 359(1-2) (2010) 25-36.[44] I. Taniguchi, T. Kai, S. Duan, S. Kazama, H. Jinnai, A compatible crosslinker for enhancement of CO2 capture of poly(amidoamine) dendrimer-containing polymeric membranes, J. Membr. Sci. 475(2015) 175-183.[45] T. Sakaguchi, F. Katsura, A. Iwase, T. Hashimoto, CO2-permselective membranes of crosslinked poly(vinyl ether)s bearing oxyethylene chains, Polymer 55(6) (2014) 1459-1466.[46] S. Quan, S. Li, Z. Wang, X. Yan, Z. Guo, L. Shao, A bio-inspired CO2-philic network membrane for enhanced sustainable gas separation, J. Mater. Chem. A 3(26) (2015) 13758-13766.[47] G.K. Kline, J.R. Weidman, Q. Zhang, R. Guo, Studies of the synergistic effects of crosslink density and crosslink inhomogeneity on crosslinked PEO membranes for CO2-selective separations, J. Membr. Sci. 544(2017) 25-34.[48] A.A. Salih, C. Yi, H. Peng, B. Yang, L. Yin, W. Wang, Interfacially polymerized polyetheramine thin film composite membranes with PDMS inter-layer for CO2 separation, J. Membr. Sci. 472(2014) 110-118.[49] S. Li, Z. Wang, C. Zhang, M. Wang, F. Yuan, J. Wang, S. Wang, Interfacially polymerized thin film composite membranes containing ethylene oxide groups for CO2 separation, J. Membr. Sci. 436(2013) 121-131.[50] T.C. Merkel, H. Lin, X. Wei, R. Baker, Power plant post-combustion carbon dioxide capture:An opportunity for membranes, J. Membr. Sci. 359(1) (2010) 126-139.[51] H. Lin, S.M. Thompson, A. Serbanescu-Martin, J.G. Wijmans, K.D. Amo, K.A. Lokhandwala, T.C. Merkel, Dehydration of natural gas using membranes. Part I:Composite membranes, J. Membr. Sci. 413(2012) 70-81.[52] T.C. Merkel, I. Pinnau, R. Prabhakar, B.D. Freeman, Gas and vapor transport properties of perfluoropolymers, in:B.D. Freeman, Y. Yampolskii, I. Pinnau (Eds.), Material Science of Membranes for Gas and Vapor Separation, John Wiley & Sons, 2006.[53] I. Pinnau, L.G. Toy, Gas and vapor transport properties of amorphous perfluorinated copolymer membranes based on 2,2-bistrifluoromethyl-4,5-difluoro-1,3-dioxole/tetrafluoroethylene, J. Membr. Sci. 109(1) (1996) 125-133.[54] Y. Okamoto, H. Zhang, F. Mikes, Y. Koike, Z. He, T.C. Merkel, New perfluorodioxolane-based membranes for gas separations, J. Membr. Sci. 471(2014) 412-419.[55] M. Fang, Y. Okamoto, Y. Koike, Z. He, T.C. Merkel, Gas separation membranes prepared with copolymers of perfluoro(2-methylene-4,5-dimethyl-1,3-dioxlane) and chlorotrifluoroethylene, J. Fluor. Chem. 188(2016) 18-22.[56] T. Merkel, V. Bondar, K. Nagai, B. Freeman, Y.P. Yampolskii, Gas sorption, diffusion, and permeation in poly(2,2-bis(trifluoromethyl)-4,5-difluoro-1,3-dioxole-co-tetrafluoroethylene), Macromolecules 32(25) (1999) 8427-8440.[57] A.Y. Alentiev, V. Shantarovich, T. Merkel, V. Bondar, B. Freeman, Y.P. Yampolskii, Gas and vapor sorption, permeation, and diffusion in glassy amorphous Teflon AF1600, Macromolecules 35(25) (2002) 9513-9522.[58] V. Arcella, A. Ghielmi, G. Tommasi, High performance perfluoropolymer films and membranes, Ann. N. Y. Acad. Sci. 984(1) (2003) 226-244.[59] M. Yavari, M. Fang, H. Nguyen, T.C. Merkel, H. Lin, Y. Okamoto, Dioxolane-based perfluoropolymers with superior membrane gas separation properties, Macromolecules 51(7) (2018) 2489-2497.[60] M. Fang, Z. He, T.C. Merkel, Y. Okamoto, High-performance perfluorodioxolane copolymer membranes for gas separation with tailored selectivity enhancement, J. Mater. Chem. A 6(2018) 652-658.[61] R.R. Tiwari, Z.P. Smith, H. Lin, B. Freeman, D. Paul, Gas permeation in thin films of "high free-volume" glassy perfluoropolymers:Part I. Physical aging, Polymer 55(22) (2014) 5788-5800.[62] R.R. Tiwari, Z.P. Smith, H. Lin, B. Freeman, D. Paul, Gas permeation in thin films of "high free-volume" glassy perfluoropolymers:Part Ⅱ. CO2 plasticization and sorption, Polymer 61(2015) 1-14.[63] M. Yavari, T. Le, H. Lin, Physical aging of glassy perfluoropolymers in thin film composite membranes. Part I. Gas transport properties, J. Membr. Sci. 525(2017) 387-398.[64] M. Yavari, S. Maruf, Y. Ding, H. Lin, Physical aging of glassy perfluoropolymers in thin film composite membranes. Part Ⅱ. Glass transition temperature and the free volume model, J. Membr. Sci. 525(2017) 399-408.[65] P.M. Budd, B.S. Ghanem, S. Makhseed, N.B. McKeown, K.J. Msayib, C.E. Tattershall, Polymers of intrinsic microporosity (PIMs):Robust, solution-processable, organic nanoporous materials, Chem. Commun. 0(2) (2004) 230-231.[66] P.M. Budd, N.B. McKeown, D. Fritsch, Free volume and intrinsic microporosity in polymers, J. Mater. Chem. 15(20) (2005) 1977-1986.[67] N.B. McKeown, P.M. Budd, Polymers of intrinsic microporosity (PIMs):Organic materials for membrane separations, heterogeneous catalysis and hydrogen storage, Chem. Soc. Rev. 35(8) (2006) 675-683.[68] P.M. Budd, N.B. McKeown, B.S. Ghanem, K.J. Msayib, D. Fritsch, L. Starannikova, N. Belov, O. Sanfirova, Y. Yampolskii, V. Shantarovich, Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity:Polybenzodioxane PIM-1, J. Membr. Sci. 325(2) (2008) 851-860.[69] P.M. Budd, K.J. Msayib, C.E. Tattershall, B.S. Ghanem, K.J. Reynolds, N.B. McKeown, D. Fritsch, Gas separation membranes from polymers of intrinsic microporosity, J. Membr. Sci. 251(1-2) (2005) 263-269.[70] C.G. Bezzu, M. Carta, A. Tonkins, J.C. Jansen, P. Bernardo, F. Bazzarelli, N.B. McKeown, A spirobifluorene-based polymer of intrinsic microporosity with improved performance for gas separation, Adv. Mater. 24(44) (2012) 5930-5933.[71] I. Rose, C.G. Bezzu, M. Carta, B. Comesaña-Gándara, E. Lasseuguette, M.C. Ferrari, P. Bernardo, G. Clarizia, A. Fuoco, J.C. Jansen, Polymer ultrapermeability from the inefficient packing of 2D chains, Nat. Mater. 16(9) (2017) 932.[72] M. Carta, R. Malpass-Evans, M. Croad, Y. Rogan, J.C. Jansen, P. Bernardo, F. Bazzarelli, N.B. McKeown, An efficient polymer molecular sieve for membrane gas separations, Science 339(6117) (2013) 303-307.[73] M. Carta, M. Croad, R. Malpass-Evans, J.C. Jansen, P. Bernardo, G. Clarizia, K. Friess, M. Lan?, N.B. McKeown, Triptycene induced enhancement of membrane gas selectivity for microporous Tröger's base polymers, Adv. Mater. 26(21) (2014) 3526-3531.[74] Y. Rogan, L. Starannikova, V. Ryzhikh, Y. Yampolskii, P. Bernardo, F. Bazzarelli, J.C. Jansen, N.B. McKeown, Synthesis and gas permeation properties of novel spirobisindane-based polyimides of intrinsic microporosity, Polym. Chem. 4(13) (2013) 3813-3820.[75] Y. Rogan, R. Malpass-Evans, M. Carta, M. Lee, J.C. Jansen, P. Bernardo, G. Clarizia, E. Tocci, K. Friess, M. Lan?, A highly permeable polyimide with enhanced selectivity for membrane gas separations, J. Mater. Chem. A 2(14) (2014) 4874-4877.[76] N. Alaslai, X. Ma, B. Ghanem, Y. Wang, F. Alghunaimi, I. Pinnau, Synthesis and characterization of a novel microporous dihydroxyl-functionalized triptycenediamine-based polyimide for natural gas membrane separation, Macromol. Rapid Commun. 38(18) (2017).[77] M. Carta, P. Bernardo, G. Clarizia, J.C. Jansen, N.B. McKeown, Gas permeability of hexaphenylbenzene based polymers of intrinsic microporosity, Macromolecules 47(23) (2014) 8320-8327.[78] Q. Song, S. Cao, R.H. Pritchard, B. Ghalei, S.A. Al-Muhtaseb, E.M. Terentjev, A.K. Cheetham, E. Sivaniah, Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes, Nat. Commun. 5(2014) 4813.[79] Q. Song, S. Cao, P. Zavala-Rivera, L.P. Lu, W. Li, Y. Ji, S.A. Al-Muhtaseb, A.K. Cheetham, E. Sivaniah, Photo-oxidative enhancement of polymeric molecular sieve membranes, Nat. Commun. 4(2013) 1918.[80] T.O. McDonald, R. Akhtar, C.H. Lau, T. Ratvijitvech, G. Cheng, R. Clowes, D.J. Adams, T. Hasell, A.I. Cooper, Using intermolecular interactions to crosslink PIM-1 and modify its gas sorption properties, J. Mater. Chem. A 3(9) (2015) 4855-4864.[81] W.F. Yong, T.-S. Chung, Miscible blends of carboxylated polymers of intrinsic microporosity (cPIM-1) and Matrimid, Polymer 59(2015) 290-297.[82] L. Hao, P. Li, T.-S. Chung, PIM-1 as an organic filler to enhance the gas separation performance of Ultem polyetherimide, J. Membr. Sci. 453(2014) 614-623.[83] L. Yang, Z. Tian, X. Zhang, X. Wu, Y. Wu, Y. Wang, D. Peng, S. Wang, H. Wu, Z. Jiang, Enhanced CO2 selectivities by incorporating CO2-philic PEG-POSS into polymers of intrinsic microporosity membrane, J. Membr. Sci. 543(2017) 69-78.[84] T. Mitra, R.S. Bhavsar, D.J. Adams, P.M. Budd, A.I. Cooper, PIM-1 mixed matrix membranes for gas separations using cost-effective hypercrosslinked nanoparticle fillers, Chem. Commun. 52(32) (2016) 5581-5584.[85] M.L. Jue, V. Breedveld, R.P. Lively, Defect-free PIM-1 hollow fiber membranes, J. Membr. Sci. 530(2017) 33-41.[86] Z.G. Wang, X. Liu, D. Wang, J. Jin, Tröger's base-based copolymers with intrinsic microporosity for CO2 separation and effect of Tröger's base on separation performance, Polym. Chem. 5(8) (2014) 2793-2800.[87] N.B. McKeown, Polymers of intrinsic microporosity, ISRN Mater. Sci. 2012(2012).[88] F. Alghunaimi, B. Ghanem, N. Alaslai, R. Swaidan, E. Litwiller, I. Pinnau, Gas permeation and physical aging properties of iptycene diamine-based microporous polyimides, J. Membr. Sci. 490(2015) 321-327.[89] M.M. Khan, G. Bengtson, S. Shishatskiy, B.N. Gacal, M.M. Rahman, S. Neumann, V. Filiz, V. Abetz, Cross-linking of polymer of intrinsic microporosity (PIM-1) via nitrene reaction and its effect on gas transport property, Eur. Polym. J. 49(12) (2013) 4157-4166.[90] H.B. Park, C.H. Jung, Y.M. Lee, A.J. Hill, S.J. Pas, S.T. Mudie, E. Van Wagner, B.D. Freeman, D.J. Cookson, Polymers with cavities tuned for fast selective transport of small molecules and ions, Science 318(5848) (2007) 254-258.[91] S. Kim, Y.M. Lee, Rigid and microporous polymers for gas separation membranes, Prog. Polym. Sci. 43(2015) 1-32.[92] H. Wang, T.-S. Chung, The evolution of physicochemical and gas transport properties of thermally rearranged polyhydroxyamide (PHA), J. Membr. Sci. 385(2011) 86-95.[93] C. Aguilar-Lugo, C. Álvarez, Y.M. Lee, J.G. de la Campa, A.n.E. Lozano, Thermally rearranged polybenzoxazoles containing bulky adamantyl groups from orthosubstituted precursor copolyimides, Macromolecules 51(5) (2018) 1605-1619.[94] S.H. Han, N. Misdan, S. Kim, C.M. Doherty, A.J. Hill, Y.M. Lee, Thermally rearranged (TR) polybenzoxazole:Effects of diverse imidization routes on physical properties and gas transport behaviors, Macromolecules 43(18) (2010) 7657-7667.[95] R. Guo, D.F. Sanders, Z.P. Smith, B.D. Freeman, D.R. Paul, J.E. McGrath, Synthesis and characterization of thermally rearranged (TR) polymers:Effect of glass transition temperature of aromatic poly (hydroxyimide) precursors on TR process and gas permeation properties, J. Mater. Chem. A 1(19) (2013) 6063-6072.[96] S.H. Han, J.E. Lee, K.-J. Lee, H.B. Park, Y.M. Lee, Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement, J. Membr. Sci. 357(1-2) (2010) 143-151.[97] M. Calle, C.M. Doherty, A.J. Hill, Y.M. Lee, Cross-linked thermally rearranged poly (benzoxazole-co-imide) membranes for gas separation, Macromolecules 46(20) (2013) 8179-8189.[98] M. Calle, H.J. Jo, C.M. Doherty, A.J. Hill, Y.M. Lee, Cross-linked thermally rearranged poly (benzoxazole-co-imide) membranes prepared from ortho-hydroxycopolyimides containing pendant carboxyl groups and gas separation properties, Macromolecules 48(8) (2015) 2603-2613.[99] H.J. Jo, C.Y. Soo, G. Dong, Y.S. Do, H.H. Wang, M.J. Lee, J.R. Quay, M.K. Murphy, Y.M. Lee, Thermally rearranged poly (benzoxazole-co-imide) membranes with superior mechanical strength for gas separation obtained by tuning chain rigidity, Macromolecules 48(7) (2015) 2194-2202.[100] C.A. Scholes, C.P. Ribeiro, S.E. Kentish, B.D. Freeman, Thermal rearranged poly (benzoxazole-co-imide) membranes for CO2 separation, J. Membr. Sci. 450(2014) 72-80.[101] J.I. Choi, C.H. Jung, S.H. Han, H.B. Park, Y.M. Lee, Thermally rearranged (TR) poly (benzoxazole-co-pyrrolone) membranes tuned for high gas permeability and selectivity, J. Membr. Sci. 349(1-2) (2010) 358-368.[102] Y. Xiao, T.-S. Chung, Grafting thermally labile molecules on cross-linkable polyimide to design membrane materials for natural gas purification and CO2 capture, Energy Environ. Sci. 4(1) (2011) 201-208.[103] M.L. Chua, Y.C. Xiao, T.-S. Chung, Modifying the molecular structure and gas separation performance of thermally labile polyimide-based membranes for enhanced natural gas purification, Chem. Eng. Sci. 104(2013) 1056-1064.[104] S. Li, H.J. Jo, S.H. Han, C.H. Park, S. Kim, P.M. Budd, Y.M. Lee, Mechanically robust thermally rearranged (TR) polymer membranes with spirobisindane for gas separation, J. Membr. Sci. 434(2013) 137-147.[105] S. Kim, S.H. Han, Y.M. Lee, Thermally rearranged (TR) polybenzoxazole hollow fiber membranes for CO2 capture, J. Membr. Sci. 403(2012) 169-178.[106] K.T. Woo, J. Lee, G. Dong, J.S. Kim, Y.S. Do, W.-S. Hung, K.-R. Lee, G. Barbieri, E. Drioli, Y.M. Lee, Fabrication of thermally rearranged (TR) polybenzoxazole hollow fiber membranes with superior CO2/N2 separation performance, J. Membr. Sci. 490(2015) 129-138.[107] Y. Jiang, C.F. Chen, Recent developments in synthesis and applications of triptycene and pentiptycene derivatives, Eur. J. Org. Chem. 2011(32) (2011) 6377-6403.[108] T.M. Long, T.M. Swager, Using "internal free volume" to increase chromophore alignment, J. Am. Chem. Soc. 124(15) (2002) 3826-3827.[109] Y.J. Cho, H.B. Park, High performance polyimide with high internal free volume elements, Macromol. Rapid Commun. 32(7) (2011) 579-586.[110] S. Luo, Q. Liu, B. Zhang, J.R. Wiegand, B.D. Freeman, R. Guo, Pentiptycene-based polyimides with hierarchically controlled molecular cavity architecture for efficient membrane gas separation, J. Membr. Sci. 480(2015) 20-30.[111] S. Luo, J.R. Wiegand, P. Gao, C.M. Doherty, A.J. Hill, R. Guo, Molecular origins of fast and selective gas transport in pentiptycene-containing polyimide membranes and their physical aging behavior, J. Membr. Sci. 518(2016) 100-109.[112] S. Luo, J.R. Wiegand, B. Kazanowska, C.M. Doherty, K. Konstas, A.J. Hill, R. Guo, Finely tuning the free volume architecture in iptycene-containing polyimides for highly selective and fast hydrogen transport, Macromolecules 49(9) (2016) 3395-3405.[113] B.S. Ghanem, R. Swaidan, E. Litwiller, I. Pinnau, Ultra-microporous triptycenebased polyimide membranes for high-performance gas separation, Adv. Mater. 26(22) (2014) 3688-3692.[114] R. Swaidan, B. Ghanem, E. Litwiller, I. Pinnau, Effects of hydroxyl-functionalization and sub-Tg thermal annealing on high pressure pure-and mixed-gas CO2/CH4 separation by polyimide membranes based on 6FDA and triptycene-containing dianhydrides, J. Membr. Sci. 475(2015) 571-581.[115] H. Mao, S. Zhang, Synthesis, characterization, and gas transport properties of novel iptycene-based poly[bis(benzimidazobenzisoquinolinones)], Polymer 55(1) (2014) 102-109.[116] I. Rose, M. Carta, R. Malpass-Evans, M.-C. Ferrari, P. Bernardo, G. Clarizia, J.C. Jansen, N.B. McKeown, Highly permeable benzotriptycene-based polymer of intrinsic microporosity, ACS Macro Lett. 4(9) (2015) 912-915.[117] J.R. Weidman, R. Guo, The use of iptycenes in rational macromolecular design for gas separation membrane applications, Ind. Eng. Chem. Res. 56(15) (2017) 4220-4236.[118] S.A. Lawrence, Amines:Synthesis, Properties and Applications, Cambridge University Press, 2004.[119] T.J. Kim, B. Li, M.B. Hägg, Novel fixed-site-carrier polyvinylamine membrane for carbon dioxide capture, J. Polym. Sci. B Polym. Phys. 42(23) (2004) 4326-4336.[120] M. Sandru, T.-J. Kim, M.-B. Hägg, High molecular fixed-site-carrier PVAm membrane for CO2 capture, Desalination 240(1-3) (2009) 298-300.[121] Z. Tong, W.S.W. Ho, New sterically hindered polyvinylamine membranes for CO2 separation and capture, J. Membr. Sci. 543(2017) 202-211.[122] S.B. Hamouda, Q.T. Nguyen, D. Langevin, S. Roudesli, Poly(vinylalcohol)/poly (ethyleneglycol)/poly(ethyleneimine) blend membranes-Structure and CO2 facilitated transport, C. R. Chim. 13(3) (2010) 372-379.[123] M.S.A. Rahaman, L. Zhang, L.-H. Cheng, X.-H. Xu, H.-L. Chen, Capturing carbon dioxide from air using a fixed carrier facilitated transport membrane, RSC Adv. 2(24) (2012) 9165-9172.[124] Y. Liu, S. Yu, H. Wu, Y. Li, S. Wang, Z. Tian, Z. Jiang, High permeability hydrogel membranes of chitosan/polyether-block-amide blends for CO2 separation, J. Membr. Sci. 469(2014) 198-208.[125] M. Sandru, S.H. Haukebø, M.-B. Hägg, Composite hollow fiber membranes for CO2 capture, J. Membr. Sci. 346(1) (2010) 172-186.[126] L. Deng, M.-B. Hägg, Fabrication and evaluation of a blend facilitated transport membrane for CO2/CH4 separation, Ind. Eng. Chem. Res. 54(44) (2015) 11139-11150.[127] P. Li, Z. Wang, W. Li, Y. Liu, J. Wang, S. Wang, High-performance multilayer composite membranes with mussel-inspired polydopamine as a versatile molecular bridge for CO2 separation, ACS Appl. Mater. Interfaces 7(28) (2015) 15481-15493.[128] S. Li, Z. Wang, X. Yu, J. Wang, S. Wang, High-performance membranes with multipermselectivity for CO2 separation, Adv. Mater. 24(24) (2012) 3196-3200.[129] W. He, Z. Wang, W. Li, S. Li, Z. Bai, J. Wang, S. Wang, Cyclic tertiary amino group containing fixed carrier membranes for CO2 separation, J. Membr. Sci. 476(2015) 171-181.[130] X. Yu, Z. Wang, Z. Wei, S. Yuan, J. Zhao, J. Wang, S. Wang, Novel tertiary amino containing thin film composite membranes prepared by interfacial polymerization for CO2 capture, J. Membr. Sci. 362(1-2) (2010) 265-278.[131] H. Bai, W.S.W. Ho, New carbon dioxide-selective membranes based on sulfonated polybenzimidazole (SPBI) copolymer matrix for fuel cell applications, Ind. Eng. Chem. Res. 48(5) (2008) 2344-2354.[132] R. Xing, W.S.W. Ho, Crosslinked polyvinylalcohol-polysiloxane/fumed silica mixed matrix membranes containing amines for CO2/H2 separation, J. Membr. Sci. 367(1-2) (2011) 91-102.[133] Y. Zhao, W.S.W. Ho, CO2-selective membranes containing sterically hindered amines for CO2/H2 separation, Ind. Eng. Chem. Res. 52(26) (2012) 8774-8782.[134] V. Vakharia, K. Ramasubramanian, W.S.W. Ho, An experimental and modeling study of CO2-selective membranes for IGCC syngas purification, J. Membr. Sci. 488(2015) 56-66.[135] S. Yuan, Z. Wang, Z. Qiao, M. Wang, J. Wang, S. Wang, Improvement of CO2/N2 separation characteristics of polyvinylamine by modifying with ethylenediamine, J. Membr. Sci. 378(1-2) (2011) 425-437.[136] Z. Qiao, Z. Wang, S. Yuan, J. Wang, S. Wang, Preparation and characterization of small molecular amine modified PVAm membranes for CO2/H2 separation, J. Membr. Sci. 475(2015) 290-302.[137] Z. Qiao, Z. Wang, C. Zhang, S. Yuan, Y. Zhu, J. Wang, S. Wang, PVAm-PIP/PS composite membrane with high performance for CO2/N2 separation, AIChE J. 59(1) (2013) 215-228.[138] Y. Chen, L. Zhao, B. Wang, P. Dutta, W.S.W. Ho, Amine-containing polymer/zeolite Y composite membranes for CO2/N2 separation, J. Membr. Sci. 497(2016) 21-28.[139] Y. Chen, W.S.W. Ho, High-molecular-weight polyvinylamine/piperazine glycinate membranes for CO2 capture from flue gas, J. Membr. Sci. 514(2016) 376-384.[140] W. Salim, V. Vakharia, Y. Chen, D. Wu, Y. Han, W.S.W. Ho, Fabrication and field testing of spiral-wound membrane modules for CO2 capture from flue gas, J. Membr. Sci. 556(2018) 126-137.[141] M. Sandru, T.-J. Kim, W. Capala, M. Huijbers, M.-B. Hägg, Pilot scale testing of polymeric membranes for CO2 capture from coal fired power plants, Energy Procedia 37(2013) 6473-6480.[142] J. Huang, J. Zou, W.S.W. Ho, Carbon dioxide capture using a CO2-selective facilitated transport membrane, Ind. Eng. Chem. Res. 47(4) (2008) 1261-1267.[143] J. Zou, W.S.W. Ho, CO2-selective polymeric membranes containing amines in crosslinked poly(vinyl alcohol), J. Membr. Sci. 286(1) (2006) 310-321.[144] R. Pelton, Polyvinylamine:A tool for engineering interfaces, Langmuir 30(51) (2014) 15373-15382.[145] D. Wu, C. Sun, P.K. Dutta, W.W. Ho, SO2 interference on separation performance of amine-containing facilitated transport membranes for CO2 capture from flue gas, J. Membr. Sci. 534(2017) 33-45.[146] S. Li, Z. Wang, W. He, C. Zhang, H. Wu, J. Wang, S. Wang, Effects of minor SO2 on the transport properties of fixed carrier membranes for CO2 capture, Ind. Eng. Chem. Res. 53(18) (2014) 7758-7767.[147] V. Vakharia, W. Salim, M. Gasda, W.S.W. Ho, Oxidatively stable membranes for CO2 separation and H2 purification, J. Membr. Sci. 533(2017) 220-228.[148] L. Xiong, S. Gu, K.O. Jensen, Y.S. Yan, Facilitated transport in hydroxide-exchange membranes for post-combustion CO2 separation, ChemSusChem 7(1) (2014) 114-116.[149] Y. Wang, Y. Shang, X. Li, T. Tian, L. Gao, L. Jiang, Fabrication of CO2 facilitated transport channels in block copolymer through supramolecular assembly, Polymers 6(5) (2014) 1403-1413.[150] N.V. Blinova, F. Svec, Functionalized polyaniline-based composite membranes with vastly improved performance for separation of carbon dioxide from methane, J. Membr. Sci. 423(2012) 514-521. [151] P. Li, Z. Wang, Y. Liu, S. Zhao, J. Wang, S. Wang, A synergistic strategy via the combination of multiple functional groups into membranes towards superior CO2 separation performances, J. Membr. Sci. 476(2015) 243-255.[152] M. Wang, Z. Wang, J. Wang, Y. Zhu, S. Wang, An antioxidative composite membrane with the carboxylate group as a fixed carrier for CO2 separation from flue gas, Energy Environ. Sci. 4(10) (2011) 3955-3959.[153] M. Wang, Z. Wang, S. Li, C. Zhang, J. Wang, S. Wang, A high performance antioxidative and acid resistant membrane prepared by interfacial polymerization for CO2 separation from flue gas, Energy Environ. Sci. 6(2) (2013) 539-551.[154] W.M. McDanel, M.G. Cowan, N.O. Chisholm, D.L. Gin, R.D. Noble, Fixed-site-carrier facilitated transport of carbon dioxide through ionic-liquid-based epoxy-amine ion gel membranes, J. Membr. Sci. 492(2015) 303-311.[155] K. Friess, M. Lan?, K. Pilná?ek, V. Fíla, O. Vopi?ka, Z. Sedláková, M.G. Cowan, W.M. McDanel, R.D. Noble, D.L. Gin, CO2/CH4 separation performance of ionic-liquidbased epoxy-amine ion gel membranes under mixed feed conditions relevant to biogas processing, J. Membr. Sci. 528(2017) 64-71.[156] Z. Dai, L. Ansaloni, D.L. Gin, R.D. Noble, L. Deng, Facile fabrication of CO2 separation membranes by cross-linking of poly (ethylene glycol) diglycidyl ether with a diamine and a polyamine-based ionic liquid, J. Membr. Sci. 523(2017) 551-560.[157] S. Kasahara, E. Kamio, A. Yoshizumi, H. Matsuyama, Polymeric ion-gels containing an amino acid ionic liquid for facilitated CO2 transport media, Chem. Commun. 50(23) (2014) 2996-2999.[158] F. Moghadam, E. Kamio, H. Matsuyama, High CO2 separation performance of amino acid ionic liquid-based double network ion gel membranes in low CO2 concentration gas mixtures under humid conditions, J. Membr. Sci. 525(2017) 290-297.[159] F. Moghadam, E. Kamio, T. Yoshioka, H. Matsuyama, New approach for the fabrication of double-network ion-gel membranes with high CO2/N2 separation performance based on facilitated transport, J. Membr. Sci. 530(2017) 166-175.[160] M. Saeed, L. Deng, CO2 facilitated transport membrane promoted by mimic enzyme, J. Membr. Sci. 494(2015) 196-204.[161] M. Saeed, L. Deng, Carbon nanotube enhanced PVA-mimic enzyme membrane for post-combustion CO2 capture, Int. J. Greenhouse Gas Control 53(2016) 254-262.[162] K. Yao, Z. Wang, J. Wang, S. Wang, Biomimetic material-poly(N-vinylimidazole)-zinc complex for CO2 separation, Chem. Commun. 48(12) (2012) 1766-1768.[163] M.G. Cowan, D.L. Gin, R.D. Noble, Poly (ionic liquid)/ionic liquid ion-gels with high "free" ionic liquid content:Platform membrane materials for CO2/light gas separations, Acc. Chem. Res. 49(4) (2016) 724-732.[164] W.M. McDanel, M.G. Cowan, T.K. Carlisle, A.K. Swanson, R.D. Noble, D.L. Gin, Crosslinked ionic resins and gels from epoxide-functionalized imidazolium ionic liquid monomers, Polymer 55(16) (2014) 3305-3313.[165] J.K. Yong, G.W. Stevens, F. Caruso, S.E. Kentish, The use of carbonic anhydrase to accelerate carbon dioxide capture processes, J. Chem. Technol. Biotechnol. 90(1) (2015) 3-10.[166] Y. Xu, L. Feng, P.D. Jeffrey, Y. Shi, F.M. Morel, Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms, Nature 452(7183) (2008) 56.[167] H. Lin, E. Van Wagner, B.D. Freeman, L.G. Toy, R.P. Gupta, Plasticization-enhanced hydrogen purification using polymeric membranes, Science 311(5761) (2006) 639-642.[168] D. Bocciardo, M.-C. Ferrari, S. Brandani, Modelling and multi-stage design of membrane processes applied to carbon capture in coal-fired power plants, Energy Procedia 37(2013) 932-940.[169] K. Ramasubramanian, H. Verweij, W.S.W. Ho, Membrane processes for carbon capture from coal-fired power plant flue gas:A modeling and cost study, J. Membr. Sci. 421(2012) 299-310.[170] D. Wu, L. Zhao, V.K. Vakharia, W. Salim, W.S.W. Ho, Synthesis and characterization of nanoporous polyethersulfone membrane as support for composite membrane in CO2 separation:From lab to pilot scale, J. Membr. Sci. 510(2016) 58-71.[171] G.Z. Ramon, M.C. Wong, E.M. Hoek, Transport through composite membrane, part 1:Is there an optimal support membrane? J. Membr. Sci. 415(2012) 298-305.[172] M. Kattula, K. Ponnuru, L. Zhu, W. Jia, H. Lin, E.P. Furlani, Designing ultrathin film composite membranes:The impact of a gutter layer, Sci. Rep. 5(2015).[173] R.P. Singh, K.A. Berchtold, H2 selective membranes for precombustion carbon capture, Novel Materials for Carbon Dioxide Mitigation Technology, Elsevier 2015, pp. 177-206.[174] W. Salim, V. Vakharia, K.K. Chen, M. Gasda, W.S.W. Ho, Oxidatively stable boratecontaining membranes for H2 purification for fuel cells, J. Membr. Sci. 562(2018) 9-17.[175] G. Liu, N. Li, S.J. Miller, D. Kim, S. Yi, Y. Labreche, W.J. Koros, Molecularly designed stabilized asymmetric hollow fiber membranes for aggressive natural gas separation, Angew. Chem. 128(44) (2016) 13958-13962. |
[1] | Xingzhong Li, Kunlin Yu, Zibo He, Bo Liu, Rongfei Zhou, Weihong Xing. Improved SSZ-13 thin membranes fabricated by seeded-gel approach for efficient CO2 capture[J]. 中国化学工程学报, 2023, 56(4): 273-280. |
[2] | Zhengchi Yin, Xiaoke Wu, Yanwei Yang, Huayu Zhang, Wangtao Li, Ruimin Zhu, Qiancheng Zheng, Zhengbao Wang. Fabrication of ZIF-8 membranes on dual-layer ZnO-PES/PES organic hollow fibers by in-situ crystallization[J]. 中国化学工程学报, 2023, 55(3): 101-110. |
[3] | Zhongyao Zhang, Ming Gao, Xiaopeng Chen, Xiaojie Wei, Jiezhen Liang, Chenghong Wu, Linlin Wang. The Joule–Thomson effect of (CO2 + H2) binary system relevant to gas switching reforming with carbon capture and storage (CCS)[J]. 中国化学工程学报, 2023, 54(2): 215-231. |
[4] | Xionghui Liu, Jianfeng Du, Yu Ye, Yuchuan Liu, Shun Wang, Xianyu Meng, Xiaowei Song, Zhiqiang Liang, Wenfu Yan. Boosting selective C2H2/CH4, C2H4/CH4 and CO2/CH4 adsorption performance via 1,2,3-triazole functionalized triazine-based porous organic polymers[J]. 中国化学工程学报, 2022, 42(2): 64-72. |
[5] | Suisui Zhang, Jingying Li, Yan Nie, Luyao Qiang, Boyang Bai, Zhiwei Peng, Xiaoxun Ma. Life cycle assessment of HFC-134a production by calcium carbide acetylene route in China[J]. 中国化学工程学报, 2022, 42(2): 236-244. |
[6] | Xia Zhan, Xueying Zhao, Zhongyong Gao, Rui Ge, Juan Lu, Luying Wang, Jiding Li. Breakthroughs on tailoring membrane materials for ethanol recovery by pervaporation[J]. 中国化学工程学报, 2022, 52(12): 19-36. |
[7] | Ye Yuan, Yurui Pan, Menglong Sheng, Guangyu Xing, Ming Wang, Jixiao Wang, Zhi Wang. Synthesis and optimization of high-performance amine-based polymer for CO2 separation[J]. 中国化学工程学报, 2022, 50(10): 168-176. |
[8] | Golchehreh Bayat, Roozbeh Saghatchi, Jafar Azamat, Alireza Khataee. Separation of methane from different gas mixtures using modified silicon carbide nanosheet: Micro and macro scale numerical studies[J]. 中国化学工程学报, 2020, 28(5): 1268-1276. |
[9] | Mengqi Shi, Chenxi Dong, Zhi Wang, Xinxia Tian, Song Zhao, Jixiao Wang. Support surface pore structures matter: Effects of support surface pore structures on the TFC gas separation membrane performance over a wide pressure range[J]. 中国化学工程学报, 2019, 27(8): 1807-1816. |
[10] | Gholamhossein Sodeifian, Mojtaba Raji, Morteza Asghari, Mashallah Rezakazemi, Amir Dashti. Polyurethane-SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation[J]. Chinese Journal of Chemical Engineering, 2019, 27(2): 322-334. |
[11] | Yibin Wei, Hengfei Zhang, Jiaojiao Lei, Huating Song, Hong Qi. Controlling pore structures of Pd-doped organosilica membranes by calcination atmosphere for gas separation[J]. 中国化学工程学报, 2019, 27(12): 3036-3042. |
[12] | Ke Deng, Zhuang Liu, Jiaqi Hu, Wenying Liu, Lei Zhang, Rui Xie, Xiaojie Ju, Wei Wang, Liangyin Chu. Composite bilayer films with organic compound-triggered bending properties[J]. 中国化学工程学报, 2019, 27(10): 2587-2595. |
[13] | Hongyong Zhao, Lizhong Feng, Xiaoli Ding, Xiaoyao Tan, Yuzhong Zhang. Gas permeation properties of a metallic ion-cross-linked PIM-1 thin-film composite membrane supported on a UV-cross-linked porous substrate[J]. Chinese Journal of Chemical Engineering, 2018, 26(12): 2477-2486. |
[14] | Misagh Ahmadi, Sara Masoumi, Shadi Hassanajili, Feridun Esmaeilzadeh. Modification of PES/PU membrane by supercritical CO2 to enhance CO2/CH4 selectivity: Fabrication and correlation approach using RSM[J]. Chinese Journal of Chemical Engineering, 2018, 26(12): 2503-2515. |
[15] | Gang Yue, Aixian Liu, Qiang Sun, Xingxun Li, Wenjie Lan, Lanying Yang, Xuqiang Guo. The combination of 1-octyl-3-methylimidazolium tetrafluorborate with TBAB or THF on CO2 hydrate formation and CH4 separation from biogas[J]. Chinese Journal of Chemical Engineering, 2018, 26(12): 2495-2502. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||