[1] J. Osuntokun, P.A. Ajibade, Structural and thermal studies of ZnS and CdS nanoparticles in polymer matrices, J. Nanomater. 2016(9) (2016) 1-14.[2] M.B. Gebeyehu, Y.H. Chang, C.M. Wu, et al., Fabrication and characterization of silver nanofibers using coaxial electrospinning process, RSC Adv. 6(59) (2016) 54162-54168.[3] B. Seong, S. Ha, H.U. Kim, et al., Deposition of controllable nanoparticles by hybrid aerodynamic and electrostatic spray, Nano 12(02) (2017) 4343-4349.[4] J.D. Regele, M.J. Papac, M.J.A. Rickard, et al., Effects of capillary spacing on EHD spraying from an array of cone jets, J. Aerosol Sci. 33(11) (2002) 1471-1479.[5] S.R. Snarski, P.F. Dunn, Experiments characterizing the interaction between two sprays of electrically charged liquid droplets, Exp. Fluids 11(4) (1991) 268-278.[6] P.F. Dunn, S.R. Snarski, Velocity component and diameter distribution characteristics of droplets within two interacting electrohydrodynamic sprays, Phys. Fluids A Fluid Dyn. 3(3) (1991) 492-494.[7] A.J. Rulison, R.C. Flagan, Scale-up of electrospray atomization using linear arrays of Taylor cones, Rev. Sci. Instrum. 64(3) (1993) 683-686.[8] B.Q.T. Si, D. Byun, S. Lee, Experimental and theoretical study of a cone-jet for an electrospray microthruster considering the interference effect in an array of nozzles, J. Aerosol Sci. 38(9) (2007) 924-934.[9] A.N. Hubacz, J.C.M. Marijnissen, The scale-up of electrohydrodynamic atomization, J. Aerosol Sci. 34(Suppl. 1) (2003) S1269-S1270.[10] M.S. Lhernould, P. Lambert, Compact polymer multi-nozzles electrospray device with integrated microfluidic feeding system, J. Electrost. 69(4) (2011) 313-319.[11] R.P.A. Hartman, J.P. Borra, D.J. Brunner, J.C.M. Marijnissen, B. Scarlett, The evolution of electrohydrodynamic sprays produced in the cone-jet mode, a physical model, J. Electrost. 47(1999) 143-170.[12] S. Martin, A. Perea, P.L. Garcia-Ybarra, et al., Effect of the collector voltage on the stability of the cone-jet mode in electrohydrodynamic spraying, J. Aerosol Sci. 46(4) (2012) 53-63.[13] J.H.W. Lee, V. Cheung, Generalized Lagrangian model for buoyant jets in current, J. Environ. Eng. 116(6) (1990) 1085-1106.[14] P.D. Yapa, L. Zheng, F. Chen, A model for deepwater oil/gas blowouts, Mar. Pollut. Bull. 43(7) (2001) 234-241.[15] H. Chen, W. An, Y. You, et al., Numerical study of underwater fate of oil spilled from deepwater blowout, Ocean Eng. 110(2015) 227-243.[16] M. Cloupeau, B. Prunet-Foch, Electrostatic spraying of liquids in cone-jet mode, J. Electrost. 22(2) (1989) 135-159.[17] W. Wei, Z. Gu, S. Wang, et al., Numerical simulation of the cone-jet formation and current generation in electrostatic spray-Modeling as regards space charged droplet effect, J. Micromech. Microeng. 23(1) (2013) 15004-15014(11).[18] H. Liu, Science and Engineering of Droplets:Fundamentals and Applications (Materials and Processing Technology), Noyes Publications, Park Ridge, NJ, 2000.[19] N. Ashgriz, A.L. Yarin, Capillary Instability of Free Liquid Jets, Handbook of Atomization and Sprays, Springer US, (2011)3-53.[20] R.P. Grant, S. Middleman, Newtonian jet stability, AIChE J. 12(4) (1966) 669-678.[21] J. Zhang, H. He, Simulation on motion of a group of charged droplets in an electrostatic spray, Atomization Sprays 22(1) (2012) 37-56.[22] Z. Wang, L. Xia, S. Zhan, Experimental Study on Electrohydrodynamics (EHD) Spraying of Ethanol with double capillaries, Appl. Therm. Eng. 120(25) (2017) 474-483. |