[1] R.E. Pattle, Production of electric power by mixing fresh and salt water in the hydroelectric pile, Nature 174(1954) 660-660.[2] P. Dlugolecki, K. Nymeijer, S. Metz, M. Wessling, Current status of ion exchange membranes for power generation from salinity gradients, J. Membr. Sci. 319(1-2) (2008) 214-222.[3] E. Guler, W.V. Baak, M. Saakes, K. Nijmeijer, Monovalent-ion-selective membranes for reverse electrodialysis, J. Membr. Sci. 55(4) (2014) 254-270.[4] H.I. Jeong, H.J. Kim, D.K. Kim, Numerical analysis of transport phenomena in reverse electrodialysis for system design and optimization, Energy 68(4) (2014) 229-237.[5] A. Cipollina, G. Micale, Sustainable Energy from Salinity Gradients, Woodhead Publishing, Duxford, 2016.[6] M. Rahimi, A. D'Angelo, C.A. Gorski, O. Scialdone, B.E. Logan, Electrical power production from low-grade waste heat using a thermally regenerative ethylenediamine battery, J. Power Sources 351(2017) 45-50.[7] Xu S.M., Wu X., Wu D.B., A novel generation method and device powered by low grade heat energy. Chinese Pat. ZL 201510694726.4(2017).[8] X. Wu, S.M. Xu, D.B. Wu, H. Liu, S.Q. Chen, Methodology of assessing working mediums availability for a novel heat-power conversion system with reverse electrodialysis technology, J. CIESC 57(S2) (2016) 326-332(in Chinese).[9] Y.Y. Xie, W.X. Zhang, S. Gu, Y.S. Yan, Z.F. Ma, Process engineering in electrochemical energy devices innovation, Chin. J. Chem. Eng. 24(1) (2016) 39-47.[10] J. Veerman, M. Saakes, S.J. Metz, G.J. Harmsen, A. Daniilidis, D.A. Vermaas, R. Herber, K. Nijmeijer, Experimentally obtainable energy from mixing river water, seawater or brines with reverse electrodialysis, Renew. Energy 64(2) (2014) 123-131.[11] N.Y. Yip, D.A. Vermaas, K. Nijmeijer, M. Elimelech, Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients, Environ. Sci. Technol. 48(9) (2014) 4925-4936.[12] M. Bevacqua, A. Tamburini, M. Papapetrou, A. Cipollina, G. Micale, A. Piacentino, Reverse electrodialysis with NH4HCO3-water systems for heat-to-power conversion, Energy 137(2017) 1293-1307.[13] X. Luo, X. Cao, Y. Mo, K. Xiao, X. Zhang, P. Liang, Power generation by coupling reverse electrodialysis and ammonium bicarbonate:implication for recovery of waste heat, Electrochem. Commun. 19(1) (2012) 25-28.[14] X. Wu, S.M. Xu, D.B. Wu, Ternary working fluids for a heat-power conversion system with reverse electrodialysis technology. Chinese Pat. ZL 201610126962.0(2018).[15] PubChem Database, Compound summary for CID 517044:potassium acetate. U.S. National Library of Medicine.[2017-9-15], https://pubchem.ncbi.nlm.nih.gov/compound/Potassium_acetate#section=Top.[16] D.R. Lide, Handbook of Chemistry and Physics, 84th ed. CRC Press, Florida, 2003.[17] J.G. Speiht, LANGE's Handbook of Chemistry, 15th ed. Mcgraw-Hill, New York, 2005.[18] A. Apelblat, E. Manzurola, The vapour pressures over saturated aqueous solutions of sodium and potassium acetates, chlorates, and perchlorates, J. Chem. Thermodyn. 39(8) (2007) 1176-1181.[19] D. Meranda, W.F. Furter, Vapor-liquid equilibrium data for system:ethanol-water saturated with potassium acetate, Can. J. Chem. Eng. 44(5) (1966) 298-300.[20] V.K.L. Mer, J.P. Chittum, The conductance of salts (potassium acetate) and the dissociation constant of acetic acid in deuterium oxide, J. Am. Chem. Soc. 58(9) (2002) 1642-1644.[21] T.S. Murthy, K. Lakshminarayana, Conductance studies of alkali metal acetates in acetic acid-acetonitrile mixtures, Phys. Chem. Liq. 20(2-3) (1989) 167-176.[22] R.S. Sah, B. Sinha, M.N. Roy, Ion association and solvation behavior of some alkali metal acetates in aqueous 2-butanol solutions at T=298.15, 303.15 and 308.15 K, Fluid Phase Equilib. 307(2) (2011) 216-221.[23] National Institute of Standards and Technology, NIST chemistry webbook, SRD 69,[2018-05-18] http://webbook.nist.gov/chemistry/.[24] A.D. John, Lange's Handbook of Chemistry, 15th ed. McGraw-Hill, New York, 1998.[25] L. Wu, Q. Zhang, Error Analysis and Data Processing, Tsinghua University Press, Beijing, 2010(in Chinese).[26] National Institute of Metrology, Electrolytic conductivity meters, Chinese Metrology Verification Regulation JJG 2007, pp. 376-2007, (in Chinese).[27] Y.G. Li, J.F. Lu, The Theory of Electrolyte Solutions, Tsinghua University Press, Beijing, 2005(in Chinese).[28] C.H. Hammann, A. Hamnett, W. Vielstich, Electrochemistry, 2rd ed. Wiley-VCH Press, Weinheim, 2007.[29] R.A. Robinson, H.S. Harned, Some aspects of the thermodynamics of strong electrolytes from electromotive force and vapor pressure measurements, Chem. Rev. 28(3) (1941) 419-476.[30] Wikipedia, Bjerrum length,[2017-02-26] https://en.wikipedia.org/wiki/Bjerrum_length.[31] Y. Tanaka, Y.F. Xiao, S. Matsuo, Relative permittivity of fluoroalcohols at temperatures from 293 to 323 K and pressures up to 50 MPa, Fluid Phase Equilib. 170(1) (2000) 139-149.[32] G. Gente, C.L. Mesa, Water-trifluoroethanol mixtures:some physicochemical properties, J. Solut. Chem. 29(11) (2000) 1159-1172.[33] G. Gente, C.L. Mesa, R. Muzzalupo, G.A. Ranieri, Micelle formation and phase equilibria in a water-trifluoroethanol-fluorocarbon surfactant system, Langmuir 16(21) (2000) 7914-7919.[34] R.M. Fuoss, Conductance-concentration function for the paired ion model, J. Phys. Chem. 82(22) (1978) 2427-2440.[35] R.M. Diamond, The activity coefficients of strong electrolytes. The halide salts, J. Am. Chem. Soc. 80(18) (1958) 4808-4812.[36] B.S. Krumgalz, Ion-solvent interactions and ionic association in ethanol solutions, J. Solut. Chem. 11(4) (1982) 283-293.[37] B.S. Krumgalz, Interaction of tetraalkylammonium and some other organic ions with solvent molecules, J. Gen. Chem. USSR 4(1974) 1585-1588.[38] H. Chen, L.S. Wang, B. Jiang, M.Y. Li, Measurements of conductivity for low concentration strongelectrolytes in organic solvents (I) LiBr, LiCl, and LiNO3 in alcohols, Chin. J. Chem. Eng. 20(5) (2012) 1024-1033.[39] G.H. Gao, H.B. Shi, Y.X. Yu, Mutual diffusion coefficients of concentrated 1:1 electrolyte from the modified mean spherical approximation, Fluid Phase Equilib. 256(1) (2007) 105-111.[40] O. Bernard, W. Kunz, P. Turq, L. Blum, Self-diffusion in electrolyte solutions using the mean spherical approximation, J. Phys. Chem. 96(1) (1992) 398-403.[41] O. Bernard, W. Kunz, P. Turq, L. Blum, Conductance in electrolyte solutions using the mean spherical approximation, J. Phys. Chem. 96(9) (1992) 3833-3840.[42] J.F. Dufreche, O. Bernard, P. Turq, Transport equations for concentrated electrolyte solutions:reference frame, mutual diffusion, J. Chem. Phys. 116(5) (2002) 2085-2097.[43] H.B. Shi, Y.X. Yu, G.H. Gao, Brownian dynamics simulation of self-diffusion coefficients of electrolyte solutions, Chem. J. Chin. Univ. 25(6) (2004) 2317-2321(In Chinese).[44] H.B. Shi, Y.X. Yu, G.H. Gao, Study on the transport properties of aqueous electrolyte solution by brownian dynamics simulation, Acta Chim. Sin. 63(5) (2005) 358-362(In Chinese).[45] Y.C. Wu, W.F. Koch, E.C. Zhong, H.L. Friedman, The cross-square rule for transport in electrolyte mixtures, J. Phys. Chem. 92(6) (1988) 1692-1695.[46] T.F. Young, M.B. Smith, Thermodynamic properties of mixtures of electrolytes in aqueous solutions, J. Phys. Chem. 58(9) (1954) 716-724.[47] D.G. Miller, Binary mixing approximations and relations between specific conductance, molar conductance, equivalent conductance, and ionar conductance for mixtures, J. Phys. Chem. 100(4) (1996) 1220-1226.[48] Y.F. Chen, Y.F. Hu, J.G. Qi, Y. Sun, Z.Y. Li, Densities, conductivities, and viscosities of aqueous solutions of N-hexyl, methylpyrrolidinium bromide and N-butyl, methylpyrrolidinium bromide at different temperatures, Chin. J. Chem. Eng. 23(1) (2015) 213-218.[49] Y.F. Hu, X.M. Zhang, J.G. Li, Q.Q. Liang, Semi-ideal solution theory. 2. Extension to conductivity of mixed electrolyte solutions, J. Phys. Chem. B 112(48) (2008) 15376-15381.[50] Q.Q. Liang, Y.F. Hu, W.J. Yue, Electrical conductivities for four ternary electrolyte aqueous solutions with one or two ionic liquid components at ambient temperatures and pressure, Chin. J. Chem. Eng. 23(6) (2015) 873-879.[51] D.A. Vermaas, M. Saakes, K. Nijmeijer, Early detection of preferential channeling in reverse electrodialysis, Electrochim. Acta 117(2014) 9-17.[52] S.M. Xu, D.B. Wu, X. Wu, J.Y. Hu, H. Liu, H.J. Zhang, S.Q. Chen, J. Chen, Experimental study on power generated by solution concentration difference changing with lithium chloride aqueous, J. Dalian Univ. Tech. 57(4) (2017) 337-344(in Chinese).[53] M. Turek, B. Bandura, P. Dydo, Power production from coal-mine brine utilizing reversed electrodialysis, Desalination 221(1-3) (2008) 462-466.[54] J. Veerman, M. Saakes, S.J. Metz, G.J. Harmsen, Reverse electrodialysis:performance of a stack with 50 cells on the mixing of sea and river water, J. Membr. Sci. 327(1) (2009) 136-144.[55] D.A. Vermaas, M. Saakes, K. Nijmeijer, Doubled power density from salinity gradients at reduced intermembrane distance, Environ. Sci. Technol. 45(16) (2011) 7089-7095. |