[1] A.S.O. Idris, A. Pandey, S.S. Rao, R.K. Sukumaran, Cellulase production through solidstate tray fermentation, and its use for bioethanol from sorghum stover, Bioresour. Technol. 242(2017) 265-271.[2] M. Linde, M. Galbe, G. Zacchi, Simultaneous saccharification and fermentation of steam-pretreated barley straw at low enzyme loadings and low yeast concentration, Enzym. Microb. Technol. 40(2007) 1100-1107.[3] L.P. Devendra, A. Pandey, Hydrotropic pretreatment on rice straw for bioethanol production, Renew. Energy 98(2016) 2-8.[4] L. Capolupo, V. Faraco, Green methods of lignocellulose pretreatment for biorefinery development, Appl. Microbiol. Biotechnol 100(2016) 9451-9467.[5] R.R. Singhania, R. Saini, R.M. Adsul, J.K. Saini, A. Mathur, D. Tuli, An integrative process for bio-ethanol production employing SSF produced cellulase without extraction, Biochem. Eng. J. 102(2015) 45-48.[6] F.M. Cunhaa, A.C. Badinoa, C.S. Farinasa, Effect of a novel method for in-house cellulase production on 2G ethanol yields, Biocatal. Agric. Biotechnol. 9(2017) 224-229.[7] M. Lever, G. Ho, R. Cord-Ruwisch, Ethanol from lignocellulose using crude unprocessed cellulase from solid-state fermentation, Bioresour. Technol. 101(2010) 7083-7087.[8] M. Narraa, J. Divechab, D. Shaha, V. Balasubramaniana, B. Vyasa, M. Harijana, K. Macwana, Cellulase production, simultaneous saccharification and fermentation in a single vessel:A new approach for production of bio-ethanol from mild alkali pre-treated water hyacinth, J. Environ. Chem. Eng. 5(2017) 2176-2181.[9] S. Baek, S. Kim, K. Lee, J. Lee, J. Hahn, Cellulosic ethanol production by combination of cellulase-displaying yeast cells, Enzym. Microb. Technol. 51(2012) 366-372.[10] A. Sorensen, M. Lubeck, P.S. Lubeck, B.K. Ahring, Fungal beta-glucosidases:A bottleneck in industrial use of lignocellulosic materials, Biomol. Ther. 3(2013) 612-631.[11] R. Cavicchioli, T. Charlton, H. Ertan, S.M. Omar, K. Siddiqui, T. Williams, Biotechnological uses of enzymes from psychrophiles, Microb. Biotechnol. 4(2011) 449-460.[12] W.C. Chen, Y.C. Lin, Y.L. Ciou, I.M. Chu, S.L. Tsai, J.C. Lan, Y.K. Chang, Y.H. We, Producing bioethanol from pretreated-wood dust by simultaneous saccharification and cofermentation process, J. Taiwan Inst. Chem. Eng. 79(2017) 43-48.[13] A. Mahboubi, P. Ylitervo, W. Doyen, H.D. Wever, B. Molenberghs, M.J. Taherzadeh, Continuous bioethanol fermentation from wheat straw hydrolysate with high suspended solid content using an immersed flat sheet membrane bioreactor, Bioresour. Technol. 241(2017) 296-308.[14] A. Aguilar-Reynosa, A. Romani, R.M. Rodriguez-Jasso, C.N. Aguilar, G. Garrote, H.A. Ruiz, Comparison of microwave and conduction-convection heating autohydrolysis pretreatment for bioethanol production, Bioresour. Technol. 243(2017) 273-283.[15] A.S. Bommarius, M. Sohn, Y. Kang, J.H. Lee, M.J. Realff, Protein engineering of cellulases, Curr. Opin. Biotechnol. 29(2014) 139-145.[16] M. Ueda, T. Goto, M. Nakazawa, K. Miyatake, M. Sakaguchi, K. Inouye, A novel coldadapted cellulase complex from Eisenia foetida:Characterization of a multienzyme complex with carboxymethylcellulase, β-glucosidase, β-1,3 glucanase, and β-xylosidase, Comp. Biochem. Physiol. 157(2010) 26-32.[17] H.A. Cristobala, A. Schmidtb, E. Kotheb, J. Brecciac, C.M. Abatea, Characterization of inducible cold-active-glucosidases from the psychrotolerant bacterium Shewanella sp. G5 isolated from a sub-Antarctic ecosystem, Enzym. Microb. Technol. 45(2009) 498-506.[18] L.Y. Liang, D.S. Xue, Kinetics of cellulose hydrolysis by halostable cellulase from a marine Aspergillus niger at different salinities, Process Biochem. 63(2017) 163-168.[19] R.C. Kuhad, D. Deswal, S. Sharma, A. Bhattacharya, K.K. Jain, A. Kaur, B.I. Pletschke, A. Singh, M. Karp, Revisiting cellulase production and redefining current strategies based on major challenges, Renew. Sust. Energ. Rev. 55(2016) 249-272.[20] K. Igarashi, T. Uchihashi, A. Koivula, M. Wada, S. Kimura, T. Okamoto, M. Penttila, T. Ando, M. Samejima, Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface, Science 333(2011) 1279-1282.[21] M.K. Bhat, S. Bhat, Cellulose degrading enzymes and their potential industrial applications, Biotechnol. Adv. 15(1997) 583-620.[22] Y. Shi, Y.M. Tao, S.J. Ma, G. An, M.N. Long, Q.X. Chen, Purification and some properties of endoglucanase from Glyptotermes xiamenensis, J. Appl. Entomol. 134(2010) 789-797.[23] I.B. Hmad, M. Boudabbous, H. Belghith, A. Gargouri, A novel ionic liquid-stable halophilic endoglucanase from Stachybotrys microspore, Process Biochem. 54(2017) 59-66.[24] H. Dhara, M.K. Swarnkar, A. Rana, K. Kaushal, A.K. Singha, R.C. Kasanab, A. Gulatia, Complete genome sequence of a low-temperature active and alkaline-stable endoglucanase-producing Paenibacillus sp. strain IHB B 3084 from the Indian Trans-Himalayas, J. Biotechnol. 230(2016) 1-2.[25] L.Y. Liang, D.S. Xue, Kinetics of cellulose hydrolysis by halostable cellulase from a marine Aspergillus niger at different salinities, Process Biochem. 63(2017) 163-168.[26] K.S. Siddiqui, M.J. Azhar, M.H. Rashid, M.I. Rajoka, Stability and identification of active-site residues of carboxymethylcellulases from Aspergillus niger and Cellulomonas biazotea, Folia Microbiol. 42(1997) 312-318.[27] A. Karnchanatat, P. Sangvanich, J. Piaphukiew, A.J. Whalley, C.D. Reynolds, P. Sihanonth, Purification and biochemical characterization of an extracellular betaglucosidase from the wood-decaying fungus Daldinia eschscholzii (Ehrenb:Fr.) Rehm, FEMS Microbiol. Lett. 270(2007) 162-170.[28] X.F. Guan, P.L. Chen, Q.X. Xu, L. Qian, J.Q. Huang, B. Lin, Expression, purification and molecular characterization of a novel endoglucanase protein from Bacillus subtilis SB13, Protein Expr. Purif. 134(2017) 125-131.[29] S.R. Chhabra, R.M. Kelly, Biochemical characterization of Thermotoga maritima endoglucanase Cel74 with and without a carbohydrate binding module (CBM), FEBS Lett. 531(2002) 375-380.[30] L. Lin, X.Z. Liu, Y.T. Zhou, L.Y. Guan, J.J. He, W.Q. Huang, A novel pH-stable, endoglucanase (JqCel5A) isolated from a salt-lake microorganism, Jonesia quinghaiensis, Electron. J. Biotechnol. 24(2016) 56-62.[31] J.J. Yan, W.D. Liu, Y.J. Li, H.L. Lai, Y.Y. Zheng, J.W. Huang, C.C. Chen, Y. Chen, J. Jin, H.Z. Li, R.T. Guo, Functional and structural analysis of Pichia pastoris-expressed Aspergillus niger 1,4-b-endoglucanase, Biochem. Biophys. Res. Commun. 475(2016) 8-12.[32] G. Gao, R.Q. Mao, Y. Xiao, J. Zhou, Y.H. Lin, G. Li, Efficient yeast cell-surface display of an endoglucanase of Aspergillus flavus and functional characterization of the whole cell enzyme, World J. Microbiol. Biotechnol. 33(2017) 114.[33] B.C. Saha, Production, purification and properties of endoglucanase from a newly isolated strain of Mucor circinelloides, Process Biochem. 39(2004) 1871-1876.[34] A.O. Smal, H.S. Leiros, V. Os, N.P. Willassen, Cold adapted enzymes, Biotechnol. Annu. Rev. 6(2000) 1-57.[35] S. Pandey, J. Kushwah, R. Tiwari, R. Kumarb, V.S. Somvanshi, L. Nain, A.K. Saxena, Cloning and expression of β-1,4-endoglucanase gene from Bacillus subtilis isolated from soil long term irrigated with effluents of paper and pulp mill, Microbiol. Res. 169(2014) 693-698.[36] F. Segato, B. Dias, G.L. Bertoa, D.M.D. Oliveira, F.H.M.D. Souza, A.P. Citadini, M.T. Murakami, A.R.L. Damasio, F.M. Squina, I. Polikarpova, Cloning, heterologous expression and biochemical characterization of a non-specific endoglucanase family 12 from Aspergillus terreus NIH2624, Biochim. Biophys. Acta 1865(2017) 395-403.[37] H. Dhara, R.C. Kasana, S. Duttb, A. Gulatia, Cloning and expression of low temperature active endoglucanaseEG5C from Paenibacillus sp. IHB B 3084, Int. J. Biol. Macromol. 81(2015) 259-266.[38] M. Uedaa, A. Ito, M. Nakazawa, K. Miyatake, M. Sakaguchi, K. Inouye, Cloning and expression of the cold-adapted endo-1,4-β-glucanase gene from Eisenia fetida, Carbohydr. Polym. 101(2014) 511-516.[39] S. Brethauer, C.E. Wyman, Review:continuous hydrolysis and fermentation for cellulosic ethanol production, Bioresour. Technol. 101(2010) 4862-4874.[40] A. Cavka, B. Alriksson, S.H. Rose, W.H.V. Zyl, L.J. Jonsson, Production of cellulosic ethanol and enzyme from waste fiber sludge using SSF, recycling of hydrolytic enzymes and yeast, and recombinant cellulase-producing Aspergillus niger, J. Ind. Microbiol. Biotechnol. 41(2014) 1191-1200.[41] M.A. Baffi, N. Martin, T.M. Tobal, A.L. Ferrarezi, J. Henrique, G. Lago, M. Boscolo, E. Gomes, R. Da-Silva, Purification and characterization of an ethanol-tolerant β-glucosidase from Sporidiobolus pararoseus and its potential for hydrolysis of wine aroma precursors, Appl. Biochem. Biotechnol. 171(2013) 1681-1691.[42] R.N. Barbagallo, G. Spagna, R. Palmeri, C. Restuccia, P. Giudici, Enzym. Microb. Technol. 35(2004) 58-66.[43] R. Leite, H. Alves, H. Cabral, F. Pagnocca, E. Gomes, R. Da-Silva, Production and characteristics comparison of crude β-glucosidases produced by microorganisms Thermoascus aurantiacus e Aureobasidium pullulans in agricultural wastes, Enzym. Microb. Technol. 43(2008) 391-395.[44] S.D. Mansfield, J.N. Saddler, G.M. Gubitz, Characterisation of endoglucanases from the brown rot fungi Gloeophyllum sepiarium and Gloeophyllum traberum, Enzym. Microb. Technol. 23(1998) 133-140.[45] Q. Gan, S.J. Allen, G. Taylor, Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose:An overview, an experimental study and mathematical modelling, Process Biochem. 38(2003) 1003-1018.[46] D. Deka, S.P. Das, N. Sahoo, Enhanced cellulase production from Bacillus subtilis by optimizing physical parameters for bioethanol production, ISRN Biotechnol. (2013) https://doi.org/10.5402/2013/965310.[47] L. Thomas, H. Hari, V.P. Singh, Inducible cellulase production from an organic solvent tolerant Bacillus sp. SV1 and evolutionary divergence of endoglucanase in different species of the genus Bacillus, Braz. J. Microbiol. 49(2) (2018) 429-442.[48] D.S. Xue, D.Q. Lin, C.J. Gong, C.L. Peng, S.J. Yao, Expression of a bifunctional cellulase with exoglucanase andendoglucanase activities to enhance the hydrolysis ability of cellulase from a marine Aspergillus niger, Process Biochem. 52(2017) 115-122.[49] A.G. Marangoni, Enzyme Kinetics A Modern Approach, John Wiley & Sons, Inc, NJ, 2003146-150(ISBN:0-471-15985-9).[50] R.N. Barbagallo, G. Spagna, R. Palmeri, C. Restuccia, P. Giudici, Selection, characterization and comparison of β-glucosidase from mould and yeasts employable for enological applications, Enzym. Microb. Technol. 35(2004) 58-66.[51] H. Susi, B.M. Michael, Protein structure by Fourier transform infrared spectroscopy:second derivative spectra, Biochem. Biophys. Res. Commun. 115(1) (1983) 391-397.[52] H. Torii, M. Tasumi, Three-dimensional doorway-state theory for analyses of absorption bands of many-oscillator systems, J. Chem. Phys. 97(1992) 86-91.[53] S. Spassov, M. Beekes, D. Naumann, Structural differences between TSEs strains investigated by FT-IR spectroscopy, Biochim. Biophys. Acta 1760(2006) 1138-1149.[54] D.S. Xue, L.Y. Liang, D.Q. Lin, S.J. Yao, Thermal inactivation kinetics and secondary structure change of a low molecular weight halostable exoglucanase from a marine Aspergillus niger at high salinities, Appl. Biochem. Biotechnol. 183(2017) 1111-1125. |