[1] S. Roy, S. Acharya, M.D. Cloeter, Flow structure and the effect of macro-instabilities in a pitched blade stirred tank, Chem. Eng. Sci. 65(2010) 3009-3024.[2] P. Hasal, I. Fort, J. Kratena, Force effects of the macro-instability of flow pattern on radial baffles in a stirred vessel with pitched-blade and Rushton turbine impellers, Chem. Eng. Res. Des. 82(2004) 1268-1281.[3] K.V. Riet, W. Bruijn, J.M. Smith, Real and pseudo-turbulence in the discharge stream from a Rushton turbine, Chem. Eng. Sci. 31(1976) 407-112.[4] R. Escudie, A. Line, Experimental analysis of hydrodynamics in a radially agitated tank, AICHE J. 49(2003) 585-603.[5] X.H. Liu, Y.H. Bao, Z.P. Li, Z.M. Gao, J.M. Smith, Particle image velocimetry study of turbulence characteristics in a vessel agitated by a dual Rushton impeller, Chin. J. Chem. Eng. 16(2008) 700-708.[6] D.E. Shi, Y.Y. Liang, A. Eaglesham, Z.M. Gao, Effect of the impeller imbalance on the bending moment acting on an overhung shaft in a stirred vessel, Chem. Eng. Res. Des. 92(2014) 2191-2200.[7] N.R. Kippers, A.G.L. Holloway, Experiments on the whirling of pitched blade impellers in baffled mixing vessels, J. Fluid Struct. 49(2014) 29-52.[8] D.E. Shi, T. Lu, A. Eaglesham, Z.M. Gao, Characteristics of the bending moment acting on an overhung shaft in a stirred vessel, Int. J. Chem. React. Eng. 12(2014) 135-150.[9] G.L. Lane, G.D. Rigby, G.M. Evans, Pressure distribution on the surface of Rushton turbine blades-experimental measurement and prediction by CFD, J. Chem. Eng. Jpn 34(2001) 613-620.[10] T. Berger, M. Fischer, K. Strohmeier, Fluid-structure interaction of stirrers in mixing vessels, Trans. ASME 125(2003) 440-445.[11] T. Berger, K. Strohmeier, Numerical simulation of stirrer oscillations in consideration of fluid-structure-interaction and flexible restraint systems, Proceedings of the ASME Pressure Vessels and Piping Division Conference, AICHE J, Cleveland Ohio, 2003 pp.[12] K.M. Mohamed, A.G. Gerber, G.A.L. Holloway, Modelling of hydrodynamic forces on a whirling mixing vessel stirrer including fluid-structure interaction, Proceedings of the ASME Pressure Vessels and Piping Division Conference, J. Chem. Eng. Jpn, Prague, Czech Republic, 2009 pp.[13] G.C. Cudmore, A.G.L. Holloway, A.G. Gerber, Whirl instability of a rotating impeller in a baffled mixing vessel, Proceedings of the ASME Pressure Vessels and Piping Division Conference, J. Chem. Eng. Jpn, Paris, France, 2013(pp.).[14] D.E. Shi, Z.Q. Cai, A. Eaglesham, Z.M. Gao, Coupling simulation of lateral fluid structure interaction in a stirred vessel with a Rushton turbine, J. Chem. Eng. Jpn 48(2015) 147-157.[15] S. Karray, Z. Driss, A. Kaffel, H. Kchaou, M.S. Abid, Fluid-structure interaction in a stirred vessel equipped with a Rushton turbine, Int. J. Mech. Appl. 2(2012) 129-139.[16] S. Karray, Z. Driss, A. Kaffel, H. Kchaou, M.S. Abid, Numerical simulation of fluidstructure interaction in a stirred vessel equipped with an anchor impeller, J. Mech. Sci. Technol. 25(2011) 1749-1760.[17] Y.L. Young, Fluid-structure interaction analysis of flexible composite marine propellers, J. Fluids Struct. 24(2008) 799-818.[18] C.Y. Khor, M.Z. Abdullah, F.C. Ani, Study on the fluid/structure interaction at different inlet pressures in molded packaging, Microelectron. Eng. 88(2011) 3182-3194.[19] B. Landvogt, L. Osiecki, P. Patrosz, T. Zawistowski, B. Zylinski, Numerical simulation of fluid-structure interaction in the design process for a new axial hydraulic pump, Prog. Comput. Fluid Dyn. 14(2014) 31-37.[20] C.H. Lim, M.Z. Abdullah, I.A. Azid, M.S.A. Aziz, Experimental and numerical investigation of flow and thermal effects on flexible printed circuit board, Microelectron. Reliab. 72(2017) 5-17. |