[1] M. Shah, S. Shah, A. Sircar, A comprehensive overview on recent developments in refracturing technique for shale gas reservoirs, J. Nat. Gas Sci. Eng. 46(2017) 350-364.[2] R. Weijermars, US shale gas production outlook based on well roll-out rate scenarios, Appl. Energy 124(2014283-297.[3] S.E. DeRosa, D.T. Allen, Impact of natural gas and natural gas liquids supplies on the United States chemical manufacturing industry:Production cost effects and identification of bottleneck intermediates, ACS Sustain. Chem. Eng. 3(2015) 451-459.[4] C.L. Liu, Q.G. Meng, X.L. He, C.F. Li, Y.G. Ye, Z.Q. Lu, Y.H. Zhu, Y.H. Li, J.Q. Liang, Comparison of the characteristics for natural gas hydrate recovered from marine and terrestrial areas in China, J. Geochem. Explor. 152(2015) 67-74.[5] Y.F. Makogon, S.A. Holditch, T.Y. Makogon, Natural gas-hydrates-A potential energy source for the 21st Century, J. Pet. Sci. Eng. 56(2007) 14-31.[6] Y.F. Makogon, Natural gas hydrates-A promising source of energy, J. Nat. Gas Sci. Eng. 2(2010) 49-59.[7] J.J. Siirola, The impact of shale gas in the chemical industry, AIChE J. 60(2014) 810-819.[8] C. He, F.Q. You, Shale gas processing integrated with ethylene production:Novel process designs, exergy analysis, and techno-economic analysis, Ind. Eng. Chem. Res. 53(2014) 11442-11459.[9] M.K. Sabbe, K.M. Van Geem, M.F. Reyniers, G.B. Marin, First principle-based simulation of ethane steam cracking, AIChE J. 57(2011) 482-496.[10] A.E. Munoz Gandarillas, K.M. Van Geem, M.F. Reyniers, G.B. Marin, Influence of the reactor material composition on coke formation during ethane steam cracking, Ind. Eng. Chem. Res. 53(2014) 6358-6371.[11] H.Y. Cai, A. Krzywicki, M.C. Oballa, Coke formation in steam crackers for ethylene production, Chem. Eng. Process. 41(2002) 199-214.[12] S.A. Sarris, N. Olahova, K. Verbeken, M.F. Reyniers, G.B. Marin, K.M. Van Geem, Optimization of the in situ pretreatment of high temperature Ni-Cr alloys for ethane steam cracking, Ind. Eng. Chem. Res. 56(2017) 1424-1438.[13] A.S. Bodke, D.A. Olschki, L.D. Schmidt, E. Ranzi, High selectivities to ethylene by partial oxidation of ethane, Science 285(1999) 712-715.[14] M. Dente, A. Beretta, T. Faravelli, E. Ranzi, A. Abba, M. Nortarbartolo, Ethylene production via partial oxidation and pyrolysis of ethane, Stud. Surf. Sci. Catal. 136(2001) 313-318.[15] A.M. Gaffney, O.M. Mason, Ethylene production via Oxidative Dehydrogenation of Ethane using M1 catalyst, Catal. Today 285(2017) 159-165.[16] F. Cavani, N. Ballarini, A. Cericola, Oxidative dehydrogenation of ethane and propane:How far from commercial implementation? Catal. Today 127(2007) 113-131.[17] A. Qiao, V.N. Kalevaru, J. Radnik, A. Duvel, P. Heitjans, A.S.H. Kumar, P.S.S. Prasad, N. Lingaiah, A. Martin, Oxidative dehydrogenation of ethane to ethylene over V2O5/Al2O3 catalysts:Effect of source of alumina on the catalytic performance, Ind. Eng. Chem. Res. 53(2014) 18711-18721.[18] B.C. Michael, D.N. Nare, L.D. Schmidt, Catalytic partial oxidation of ethane to ethylene and syngas over Rh and Pt coated monoliths:Spatial profiles of temperature and composition, Chem. Eng. Sci. 65(2010) 3893-3902.[19] P. Botella, E. Garcia-Gonzalez, A. Dejoz, J.M.L. Nieto, M.I. Vazquez, J. Gonzalez-Calbet, Selective oxidative dehydrogenation of ethane on MoVTeNbO mixed metal oxide catalysts, J. Catal. 225(2004) 428-438.[20] Q. Zhang, J. Luo, T. Chen, J. Wang, T. Wang, Enhancement of the acetylene and ethylene yields from ethane by partially decoupling the oxidation and pyrolysis reactions, Chem. Eng. Process. Process Intensif. 122(2017) 447-459.[21] Q. Zhang, J. Wang, T. Wang, Enhancing the acetylene yield from methane by decoupling oxidation and pyrolysis reactions:A comparison with the partial oxidation process, Ind. Eng. Chem. Res. 55(2016) 8383-8394.[22] Q. Zhang, Y.F. Liu, T.W. Chen, X.Y. Yu, J.F. Wang, T.F. Wang, Simulations of methane partial oxidation by CFD coupled with detailed chemistry at industrial operating conditions, Chem. Eng. Sci. 142(2016) 126-136.[23] D.M.G. Gregory, P. Smith Michael Frenklach, Nigel W. Moriarty, Boris Eiteneer, Mikhail Goldenberg, C. Thomas Bowman, Ronald K. Hanson, Soonho Song, William C. Gardiner Jr., Vitali V. Lissianski, Zhiwei Qin, The GRI 3.0 mechanism, http://www.me.berkeley.edu/gri_mech/2008.[24] M.G. Ktalkherman, I.G. Namyatov, Pyrolysis of hydrocarbons in a heat-carrier flow with fast mixing of the components, Combust. Explos. Shock Waves 44(2008) 529-534.[25] M.G. Ktalkherman, I.G. Namyatov, V.A. Emel'kim, K.A. Lomanovich, High-selective pyrolysis of naphtha in the fast-mixing reactor, Fuel Process. Technol. 106(2013) 48-54.[26] M.G. Ktalkherman, I.G. Namyatov, V.A. Emel'kin, B.A. Pozdnyakov, Investigation of high-temperature pyrolysis of propane in a fast-mixing reactor, High Temp. 47(2009) 707-717.[27] M.G. Ktalkherman, I.G. Namyatov, V.A. Emel'kin, Effect of governing parameters on pyrolysis of liquefied petroleum gases in the high-temperature heat carrier, Theor. Found. Chem. Eng. 47(2013) 667-675.[28] A.A. Westenberg, Flame Structure, McGraw-Hill, 1965.[29] N.A. Slavinskaya, P. Frank, A modelling study of aromatic soot precursors formation in laminar methane and ethene flames, Combust. Flame 156(2009) 1705-1722.[30] Q. Li, T. Wang, Y. Liu, D. Wang, Experimental study and kinetics modeling of partial oxidation reactions in heavily sooting laminar premixed methane flames, Chem. Eng. J. S207-208(2012235-244. |