中国化学工程学报 ›› 2019, Vol. 27 ›› Issue (10): 2238-2250.DOI: 10.1016/j.cjche.2018.12.010
Haris Mahmood Khan1, Chaudhry Haider Ali1, Tanveer Iqbal1, Saima Yasin1, Muhammad Sulaiman1, Hamayoun Mahmood1, Muhammad Raashid1, Mohsin Pasha1, Bozhong Mu2
收稿日期:
2018-09-19
修回日期:
2018-11-13
出版日期:
2019-10-28
发布日期:
2020-01-17
通讯作者:
Chaudhry Haider Ali
基金资助:
Haris Mahmood Khan1, Chaudhry Haider Ali1, Tanveer Iqbal1, Saima Yasin1, Muhammad Sulaiman1, Hamayoun Mahmood1, Muhammad Raashid1, Mohsin Pasha1, Bozhong Mu2
Received:
2018-09-19
Revised:
2018-11-13
Online:
2019-10-28
Published:
2020-01-17
Contact:
Chaudhry Haider Ali
Supported by:
摘要: Biodiesel utilization has been rapidly growing worldwide as the prime alternative to petrodiesel due to a global rise in diesel fuel demand along with hazardous emissions during its thermochemical conversion. Although, several debatable issues including feedstock availability and price, fuel and food competition, changes in land use and greenhouse gas emission have been raised by using edible as well as inedible feedstocks for the production of biodiesel. However, non-crop feedstocks could be a promising alternative. In this article, waste cooking oils have been recommended as a suitable option for biodiesel production bearing in mind the current national situation. The important factors such as the quantity of waste cooking oil produced, crude oil and vegetable oil import expenses, high-speed diesel imports, waste management issues and environmental hazards are considered. Moreover, process simulation and operating cost evaluation of an acid catalyzed biodiesel production unit are also conducted. The simulation results show that the production cost of waste cooking oil-based biodiesel is about 0.66USD·L-1. We believe that the present overview would open new pathways and ideas for the development of biofuels from waste to energy approach in Pakistan.
Haris Mahmood Khan, Chaudhry Haider Ali, Tanveer Iqbal, Saima Yasin, Muhammad Sulaiman, Hamayoun Mahmood, Muhammad Raashid, Mohsin Pasha, Bozhong Mu. Current scenario and potential of biodiesel production from waste cooking oil in Pakistan: An overview[J]. 中国化学工程学报, 2019, 27(10): 2238-2250.
Haris Mahmood Khan, Chaudhry Haider Ali, Tanveer Iqbal, Saima Yasin, Muhammad Sulaiman, Hamayoun Mahmood, Muhammad Raashid, Mohsin Pasha, Bozhong Mu. Current scenario and potential of biodiesel production from waste cooking oil in Pakistan: An overview[J]. Chinese Journal of Chemical Engineering, 2019, 27(10): 2238-2250.
[1] U.S. Energy Information Administration (EIA), International Energy Outlook, https://www.eia.gov/outlooks/ieo/pdf/0484(2017).pdf2017. [2] S.S. Hosseini, M. Aghbashlo, M. Tabatabaei, G. Najafpour, H. Younesi, Thermodynamic evaluation of a photobioreactor for hydrogen production from syngas via a locally isolated Rhodopseudomonas palustris PT, Int. J. Hydrog. Energy 40(2015) 14246-14256. [3] M. Kumar, M.P. Sharma, Selection of potential oils for biodiesel production, Renew. Sust. Energ. Rev. 56(2016) 1129-1138. [4] M. Aghbashlo, M. Tabatabaei, S.S. Hosseini, H. Younesi, G. Najafpour, Exergy analysis for decision making on operational condition of a continuous photobioreactor for hydrogen production via WGS reaction, Int. J. Hydrog. Energy 41(2016) 2354-2366. [5] P.S. Nigam, A. Singh, Production of liquid biofuels from renewable resources, Prog. Energy Combust. Sci. 37(2011) 52-68. [6] M. Aghbashlo, M. Tabatabaei, P. Mohammadi, N. Pourvosoughi, A.M. Nikbakht, S.A.H. Goli, Improving exergetic and sustainability parameters of a DI diesel engine using polymer waste dissolved in biodiesel as a novel diesel additive, Energy Convers. Manag. 105(2015) 328-337. [7] A. Dadak, M. Aghbashlo, M. Tabatabaei, H. Younesi, G. Najafpour, Exergy-based sustainability assessment of continuous photobiological hydrogen production using anaerobic bacterium Rhodospirillum rubrum, J. Clean. Prod. 139(2016) 157-166. [8] M. Aghbashlo, S. Hosseinpour, M. Tabatabaei, S.S. Hosseini, G. Najafpour, H. Younesi, An exergetically-sustainable operational condition of a photobiohydrogen production system optimized using conventional and innovative fuzzy techniques, Renew. Energy 94(2016) 605-618. [9] Pakistan Economic Survey 2015-16, http://www.finance.gov.pk/survey/chapters_16/14_Energy.pdf2017. [10] Pakistan Population, http://www.worldometers.info/world-population/pakistanpopulation. [11] BP statistical review of worlds energy, https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-ofworld-energy-2017-primary-energy.pdf2017. [12] Hydrocarbon Development institute of Pakistan, HDIP, www.hdip.com.pk. [13] Government of Pakistan Ministry of Petroleum, http://www.mpnr.gov.pk/mpnr/userfiles1/file/3rdMEReport%20Revised.pdf2015. [14] BP statistical review of world energy, June 2017, https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-co2-emissions.pdf2017. [15] BP energy outlook 2035 British Petroleum 2014.BP, http://www.bp.com/content/dam/bp/pdf/energy-economics/energy-outlook-2016/bp-energy-outlook-2014.pdf2016. [16] World Health Organisation, http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/2014. [17] OPEC-2012 World Oil Outlook, https://www.opec.org/opec_web/static_files_project/media/downloads/publications/WOO%202015.pdf2012. [18] The Outlook For Energy A View to 2040 Exxonmobile, http://cdn.exxonmobil.com/~/media/global/files/outlook-for-energy/2016/2016-outlook-for-energy.pdf2015. [19] Oil Companies Advisory Council, OCAC, http://ocac.org.pk/province2017. [20] The state of Pakistan's economy, http://www.sbp.org.pk/reports/quarterly/fy17/Second/Complete.pdf2017. [21] Caretaker govt increases petrol, diesel prices, https://www.pakistantoday.com.pk/2018/07/01/caretaker-govt-increases-petrol-diesel-prices/2018. [22] R. Kikuchi, Environmental management of sulfur trioxide emission:Impact of SO3 on human health, Environ. Manag. 27(2001) 837-844. [23] S.M. Bernard, J.M. Samet, A. Grambsch, K.L. Ebi, I. Romieu, The potential impacts of climate variability and change on air pollution-related health effects in the United States, Environ. Health Perspect. 109(2001) 199-209. [24] V. Grewe, K. Dahlmann, S. Matthes, W. Steinbrecht, Attributing ozone to NOx emissions:Implications for climate mitigation measures, Atmos. Environ. 59(2012) 102-107. [25] M.V. Twigg, Progress and future challenges in controlling automotive exhaust gas emissions, Appl. Catal. B. 70(2007) 2-15. [26] İ.A. Reşitoğlu, K. Altinişik, A. Keskin, The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems, Clean Techn. Environ. Policy 17(2015) 15-27. [27] A.E. Atabani, M. Mofijur, H.H. Masjuki, I.A. Badruddin, W.T. Chong, S.F. Cheng, S.W. Gouk, A study of production and characterization of Manketti (Ricinodendron rautonemii) methyl ester and its blends as a potential biodiesel feedstock, Biofuel Res. J. 1(2014) 139-146. [28] S. Hosseinpour, M. Aghbashlo, M. Tabatabaei, E. Khalife, Exact estimation of biodiesel cetane number (CN) from its fatty acid methyl esters (FAMEs) profile using partial least square (PLS) adapted by artificial neural network (ANN), Energy Convers. Manag. 124(2016) 389-398. [29] M. Aghbashlo, M. Tabatabaei, P. Mohammadi, M. Mirzajanzadeh, M. Ardjmand, A. Rashidi, Effect of an emission-reducing soluble hybrid nanocatalyst in diesel/biodiesel blends on exergetic performance of a DI diesel engine, Renew. Energy 93(2016) 353-368. [30] M. Hajjari, M. Ardjmand, M. Tabatabaei, Experimental investigation of the effect of cerium oxide nanoparticles as a combustion-improving additive on biodiesel oxidative stability:Mechanism, RSC Adv. 4(2014) 14352-14356. [31] M. Aghbashlo, S. Shamshirband, M. Tabatabaei, P.L. Yee, Y.N. Larimi, The use of ELM-WT (extreme learning machine with wavelet transform algorithm) to predict exergetic performance of a DI diesel engine running on diesel/biodiesel blends containing polymer waste, Energy 94(2016) 443-456. [32] A. Datta, B.K. Mandal, A comprehensive review of biodiesel as an alternative fuel for compression ignition engine, Renew. Sust. Energ. Rev. 57(2016) 799-821. [33] S. Shamshirband, M. Tabatabaei, M. Aghbashlo, P.L. Yee, D. Petković, Support vector machine-based exergetic modelling of a DI diesel engine running on biodiesel-diesel blends containing expanded polystyrene, Appl. Therm. Eng. 94(2016) 727-747. [34] A.S. Silitonga, A.E. Atabani, T.M.I. Mahlia, H.H. Masjuki, I.A. Badruddin, S. Mekhilef, A review on prospect of Jatropha curcas for biodiesel in Indonesia, Renew. Sust. Energ. Rev. 15(2011) 3733-3756. [35] D.A., M. Aghbashlo, Biodiesel:Hopes and dreads, Biofuel Res. J. 3(2) (2016) 379. [36] A. Demirbas, Importance of biodiesel as transportation fuel, Energy Policy 35(2007) 4661-4670. [37] V. Gude, G. Grant, P. Patil, S. Deng, Biodiesel production from low cost and renewable feedstock, in Open Engineering, 2013595. [38] global status report, http://www.ren21.net/wp-content/uploads/2018/06/17-8652_GSR2018_FullReport_web_-1.pdf2018. [39] PFA to crack down on eateries selling used oil, https://www.dawn.com/news/13267892017. [40] M. Tabatabaei, K. Karimi, R. Kumar, Horv, #xe1, I.S. th, rv and ri, Renewable Energy and Alternative Fuel Technologies, Biomed. Res. Int. (2015) (2015) 2. [41] B. Sajjadi, A.A.A. Raman, H. Arandiyan, A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel:Composition, specifications and prediction models, Renew. Sust. Energ. Rev. 63(2016) 62-92. [42] L. Panichelli, A. Dauriat, E. Gnansounou, Life cycle assessment of soybean-based biodiesel in Argentina for export, Int. J. Life Cycle Assess. 14(2009) 144-159. [43] M. Harvey, S. Pilgrim, The new competition for land:Food, energy, and climate change, Food Policy 36(2011) S40-S51. [44] M.F. Demirbas, Biofuels from algae for sustainable development, Appl. Energy 88(2011) 3473-3480. [45] R.E.H. Sims, W. Mabee, J.N. Saddler, M. Taylor, An overview of second generation biofuel technologies, Bioresour. Technol. 101(2010) 1570-1580. [46] The World Bank, https://openknowledge.worldbank.org/bitstream/handle/10986/6820/WP4682.pdf2008. [47] P. Havlík, U.A. Schneider, E. Schmid, H. Böttcher, S. Fritz, R. Skalský, K. Aoki, S.D. Cara, G. Kindermann, F. Kraxner, S. Leduc, I. McCallum, A. Mosnier, T. Sauer, M. Obersteiner, Global land-use implications of first and second generation biofuel targets, Energy Policy 39(2011) 5690-5702. [48] J. Luoma, Hailed as a miracle crop, Jatropha falls short of hype. Yale Environment 360, Guardian Environment Network, http://www.guardian.co.uk/environment/2009/may/05/jatropha-biofuels-food-crops2009. [49] H.P.Mang,Perspective of bioenergy and Jatropha in China,international con-sultation on pro-poor Jatropha development, Int. Fund Agric. Dev. (2008) (2008)www.ifad.org/events/jatropha/country/HP_Mang.ppt. [50] W.M.J. Achten, J. Almeida, V. Fobelets, E. Bolle, E. Mathijs, V.P. Singh, D.N. Tewari, L.V. Verchot, B. Muys, Life cycle assessment of Jatropha biodiesel as transportation fuel in rural India, Appl. Energy 87(2010) 3652-3660. [51] F. Rosillo-Calle, L. Pelkmans, A. Walter, A global overview of vegetable oils, with reference to biodiesel, IEA bioenergy, J. Food Compos. Anal. 42(2009). [52] M. Akia, F. Yazdani, E. Motaee, D. Han, H. Arandiyan, A review on conversion of biomass to biofuel by nanocatalysts, Biofuel Res. J. 1(2014) 16-25. [53] A.F. Talebi, M. Tohidfar, A. Bagheri, S.R. Lyon, K. Salehi-Ashtiani, M. Tabatabaei, Manipulation of carbon flux into fatty acid biosynthesis pathway in Dunaliella salina using AccD and ME genes to enhance lipid content and to improve produced biodiesel quality, Biofuel Res. J. 1(2014) 91-97. [54] K. Beetul, S. Bibi Sadally, N. Taleb-Hossenkhan, R. Bhagooli, D. Puchooa, An investigation of biodiesel production from microalgae found in Mauritian waters, Biofuel Res. J. 1(2014) 58-64. [55] M. Tabatabaei, M. Tohidfar, G.S. Jouzani, M. Safarnejad, M. Pazouki, Biodiesel production from genetically engineered microalgae:Future of bioenergy in Iran, Renew. Sust. Energ. Rev. 15(2011) 1918-1927. [56] A.F. Talebi, M. Tohidfar, S.M. Mousavi Derazmahalleh, A. Sulaiman, A.S. Baharuddin, M. Tabatabaei, Biochemical Modulation of Lipid Pathway in Microalgae Dunaliella sp. for Biodiesel Production, Biomed. Res. Int. (2015) (2015) 12. [57] A.F. Talebi, S.K. Mohtashami, M. Tabatabaei, M. Tohidfar, A. Bagheri, M. Zeinalabedini, H. Hadavand Mirzaei, M. Mirzajanzadeh, S. Malekzadeh Shafaroudi, S. Bakhtiari, Fatty acids profiling:A selective criterion for screening microalgae strains for biodiesel production, Algal Res. 2(2013) 258-267. [58] A.F. Talebi, M. Tohidfar, M. Tabatabaei, A. Bagheri, M. Mohsenpor, S.K. Mohtashami, Genetic manipulation, a feasible tool to enhance unique characteristic of Chlorella vulgaris as a feedstock for biodiesel production, Mol. Biol. Rep. 40(2013) 4421-4428. [59] Y. Chisti, Constraints to commercialization of algal fuels, J. Biotechnol. 167(2013) 201-214. [60] S.I. Ali, http://www.nation.com.pk/pakistan-news-newspaper-daily-english-online/Regional/Karachi/14-Jul-2009/CDGK-togrow-Jatropha-plants/2009. [61] S.I. Ali, http://biodieselpk.blogspot.com/2010/03/cdgk-to-grow-jatrophaplants.htm2009. [62] Climatescope, http://global-climatescope.org/en/policies/#/policy/40772016. [63] M.H. Chakrabarti, M. Ali, J.N. Usmani, N.A. Khan, D.U.B. Hasan, M.S. Islam, A.A. Abdul Raman, R. Yusoff, M.F. Irfan, Status of biodiesel research and development in Pakistan, Renew. Sust. Energ. Rev. 16(2012) 4396-4405. [64] N.A. Khan, J.N. Usmn, "Status of jatropha cultivation for biodiesel production in Pakistan." Personal communication, https://www.intechopen.com/books/biofuelsstatus-and-perspective/prospects-for-the-production-of-biodiesel-in-pakistan2011. [65] R. Soomro, R.A. Memon, Establishment of callus and suspension culture in Jatrophacurcas, Pak. J. Bot. 39(2007) 2431-2441. [66] Plan for mass jatropha cultivation, http://www.thebioenergysite.com/news/3596/plan-for-mass-jatropha-cultivation2009, Accessed date:5 November 2017. [67] Agriculture-Ministry of Finance, http://www.finance.gov.pk/survey/chapters_16/02_Agriculture.pdf2017. [68] CEO AEDB Visits PSO's Biodiesel Pilot Nursery. 2009, http://www.psopk.com/media/vol10_no5_jan_mar09/ceo.php2009. [69] PSOs' Progress Report, http://www.psopk.com/products_services/pdf/bio_diesel.pdf2011. [70] M. Chakrabarti, J.N. Usmani, M.A. Ali, Techno-economic evaluation of two nonedible vegetable oil based biodiesel in Pakistan, NED Univ. J. Res. 7(2010) 43-54. [71] M. Ahmad, M.A. Khan, et al., Indigenous plants based biodiesel resources in Pakistan, Ethnobot. Leaflet 11(2007) 224-230. [72] National Biodiesel Program, http://www.research.org.pk/Databank/NATION-AL%20BIODIESEL/20PROGRAMME.pdf2009. [73] Water scarcity in Pakistan-A bigger threat, http://www.dw.com/en/water-scarcity-in-pakistan-a-bigger-threat-than-terrorism/a-37444480. [74] OECD-FAO agricultural outlook, http://www.fao.org2013. [75] Used cooking oil could be turned into cosmetics, http://www.newscientist.com/article/mg19325936.400-used-cooking-oil-could-be-turned-into-cosmetics.html2007. [76] Vegetable oils global consumption, https://www.statista.com/statistics/263937/vegetable-oils-global-consumption/2017. [77] Agriculture, http://www.finance.gov.pk/survey/chapters_17/02-Agriculture.pdf2017. [78] Pakistan Bureau of Statistics, www.pbs.gov.pk 2017. [79] Pakistan becomes third-largest importer of cooking oil, https://tribune.com.pk/story/1302877/high-consumption-pakistan-becomes-third-largest-importercooking-oil/2017. [80] Pakistan Oilseed and Products Annual, https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Oilseeds%20and%20Products%20Annual_Islamabad_Pakistan_4-3-2017.pdf2017. [81] J.F. Yue, C.L. Zuo, Research Progress of biodiesel preparation from waste oil, Guangzhou Chem. Ind. 12(2010) 84-85,130. [82] Y. Jiang, Y. Zhang, Supply chain optimization of biodiesel produced from waste cooking oil, Transportation Res. Procedia 12(2016) 938-949, https://doi.org/10.1016/j.trpro.2016.02.045. [83] P.R. Costa Neto, L.F.S. Rossi, G.F. Zagonel, L.P. Ramos, Produção de biocombustível alternativo ao óleo diesel através da transesterificação de óleo de soja usado em frituras, Quim Nova 23(2000) 531-537. [84] M. Khatamifar, M. Tabatabaei, United nation development program (UNDP) project no. IRA/SGP/OP5/Y2/STAR/CC/12/04(170), 2013. [85] Five Major Biofuels Companies Around the World, http://www.energydigital.com/renewables/2845/Five-major-biofuels-companies-around-the-world2010. [86] World's Largest Biodiesel Plant Starts Production in Singapore, http://cleantechnica.com/2010/11/22/worlds-largest-biodiesel-plant-starts-productionin-singapore2010. [87] Biodiesel Magazine, http://www.biodieselmagazine.com/plants/listplants/USA/2017. [88] M. Mohadesi, Z. Hojabri, G. Moradi, Biodiesel production using alkali earth metal oxides catalysts synthesized by sol-gel method, Biofuel Res. J. 1(2014) 30-33. [89] L. Lin, Z. Cunshan, S. Vittayapadung, S. Xiangqian, D. Mingdong, Opportunities and challenges for biodiesel fuel, Appl. Energy 88(2011) 1020-1031. [90] P. Verma, M.P. Sharma, Review of process parameters for biodiesel production from different feedstocks, Renew. Sust. Energ. Rev. 62(2016) 1063-1071. [91] A.P.S. Chouhan, A.K. Sarma, Modern heterogeneous catalysts for biodiesel production:A comprehensive review, Renew. Sust. Energ. Rev. 15(2011) 4378-4399. [92] A.M. Ruhul, M.A. Kalam, H.H. Masjuki, I.M.R. Fattah, S.S. Reham, M.M. Rashed, State of the art of biodiesel production processes:A review of the heterogeneous catalyst, RSC Adv. 5(2015) 101023-101044. [93] Y.H. Tan, M.O. Abdullah, C. Nolasco-Hipolito, The potential of waste cooking oilbased biodiesel using heterogeneous catalyst derived from various calcined eggshells coupled with an emulsification technique:A review on the emission reduction and engine performance, Renew. Sust. Energ. Rev. 47(2015) 589-603. [94] M. Canakci, J. Van Gerpen, BIODIESEL PRODUCTION FROM OILS AND FATS WITH HIGH FREE FATTY ACIDS, Trans. ASAE 44(2001) 1429. [95] K. Suwannakarn, Biodiesel Production from High Free Fatty Acid Content Feedstocks, (Dissertation) Clemson University, 2008. [96] S. Ebrahimi, G.D. Najafpour, F. Ardestani, Transesterification of Waste Cooking Sunflower Oil by Porcine Pancreas Lipase Using Response Surface Methodology for Biodiesel Production, 2017, 4, 20178. [97] Y. Zhang, M.A. Dubé, D.D. McLean, M. Kates, Biodiesel production from waste cooking oil:1. Process design and technological assessment, Bioresour. Technol. 89(2003) 1-16. [98] F. Tahira, S.T. Hussain, S.D. Ali, Z. Iqbal, W. Ahmad, Homogeneous catalysis of high free fatty acid waste cooking oil to fatty acid methyl esters (biodiesel), Int. J. Energy Power 1(1) (2012) 31-36. [99] L.F. Chuah, J.J. Klemeš, S. Yusup, A. Bokhari, M.M. Akbar, A review of cleaner intensification technologies in biodiesel production, J. Clean. Prod. 146(2017) 181-193. [100] Z. Qiu, L. Zhao, L. Weatherley, Process intensification technologies in continuous biodiesel production, Chem. Eng. Process Intensif. 49(2010) 323-330. [101] M.M.A. Shirazi, A. Kargari, M. Tabatabaei, B. Mostafaeid, M. Akia, M. Barkhi, M.J.A. Shirazi, Acceleration of biodiesel-glycerol decantation through NaCl-assisted gravitational settling:A strategy to economize biodiesel production, Bioresour. Technol. 134(2013) 401-406. [102] A. Noureddin, M.M.A. Shirazi, J. Tofeily, P. Kazemi, E. Motaee, A. Kargari, M. Mostafaei, M. Akia, A. Karout, R. Jaber, T. Hamieh, M. Tabatabaei, Accelerated decantation of biodiesel-glycerol mixtures:Optimization of a critical stage in biodiesel biorefinery, Sep. Purif. Technol. 132(2014) 272-280. [103] P.S. Kong, M.K. Aroua, W.M.A.W. Daud, Conversion of crude and pure glycerol into derivatives:A feasibility evaluation, Renew. Sust. Energ. Rev. 63(2016) 533-555. [104] A. Demirbas, Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification, Energy Convers. Manag. 50(2009) 923-927. [105] K.T. Tan, K.T. Lee, A.R. Mohamed, A glycerol-free process to produce biodiesel by supercritical methyl acetate technology:An optimization study via response surface methodology, Bioresour. Technol. 101(2010) 965-969. [106] P. Patil, S. Deng, J. Isaac Rhodes, P.J. Lammers, Conversion of waste cooking oil to biodiesel using ferric sulfate and supercritical methanol processes, Fuel 89(2010) 360-364. [107] R. İsa, Y. Sevil, Ö. Didem, The production of methyl esters from waste frying oil by microwave method, Asia Pac. J. Chem. Eng. 7(2012) 698-704. [108] V. Lertsathapornsuk, R. Pairintra, K. Aryusuk, K. Krisnangkura, Microwave assisted in continuous biodiesel production from waste frying palm oil and its performance in a 100 kW diesel generator, Environ. Health Perspect. 89(2008) 1330-1336. [109] S. Zhang, Y.-G. Zu, Y.-J. Fu, M. Luo, D.-Y. Zhang, T. Efferth, Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst, Bioresour. Technol. 101(2010) 931-936. [110] A.A. Refaat, S.T. El Sheltawy, K.U. Sadek, Optimum reaction time, performance and exhaust emissions of biodiesel produced by microwave irradiation, Int. J. Environ. Sci. Technol. 5(2008) 315. [111] P.D. Patil, V.G. Gude, H.K. Reddy, T. Muppaneni, S. Deng, Biodiesel production from waste cooking oil using sulfuric acid and microwave irradiation processes, J. Environ. Prot. 3(2012) 107. [112] J. Thompson, B. He, Biodiesel production using static mixers, Trans. ASABE 50(2007) 161-165. [113] R. Alamsyah, A.H. Tambunan, Y.A. Purwanto, D. Kusdiana, Comparison of StaticMixer and Blade Agitator Reactor in Biodiesel Production, Agric. Eng. Int. CIGR J. 12(2010). [114] D. Frascari, M. Zuccaro, D. Pinelli, A. Paglianti, A pilot-scale study of alkali-catalyzed sunflower oil transesterification with static mixing and with mechanical agitation, Energy Fuel 22(2008) 1493-1501. [115] A.P. Harvey, M.R. Mackley, T. Seliger, Process intensification of biodiesel production using a continuous oscillatory flow reactor, J. Chem. Technol. Biotechnol. 78(2003) 338-341. [116] H. Lodhar, R. Jachuck, Intensified biodiesel reaction using continuous rotating tube reactor technology, Proceedings of the AIChE Annual Meeting, Salt Lake City, USA, 2007. [117] M.A. Kelkar, P.R. Gogate, A.B. Pandit, Cavitation as a novel tool for process intensification of biodiesel synthesis, Proceedings of the 6th international symposium on catalysis in multiphase reactors, Pune, India, 2007. [118] O.V. Kozyuk, Apparatus and method for producing biodiesel from fatty acid feedstock, http://www.google.com/patents/US200900431182009. [119] D. Mancosky, D. Armstead, T. McGurk, G. Hopkins, K. Hudson, The use of a controlled cavitation reactor for bio-diesel production, Proceedings of the AIChE spring meeting, Houston, USA2007. [120] M. Dubé, A. Tremblay, J. Liu, Biodiesel production using a membrane reactor, Bioresour Technol. 98(2007) 639-647. [121] P. Cao, A.Y. Tremblay, M.A. Dubé, K. Morse, Effect of membrane pore size on the performance of a membrane reactor for biodiesel production, Ind. Eng. Chem. Res. 46(2007) 52-58. [122] P. Cao, A.Y. Tremblay, M.A. Dubé, Kinetics of canola oil transesterification in a membrane reactor, Ind. Eng. Chem. Res. 48(2009) 2533-2541. [123] A.A. Kiss, A.C. Dimian, G. Rothenberg, Biodiesel by catalytic reactive distillation powered by metal oxides, Energy Fuel 22(2007) 598-604. [124] B. He, A. Singh, J. Thompson, A novel continuous-flow reactor using reactive distillation for biodiesel production, Trans. ASABE 49(2006) 107-112. [125] B.B. He, A.P. Singh, J.C. Thompson, Experimental optimization of a continuous flow reactive distillation reactor for biodiesel production, Trans. ASAE Am. Soc. Agric. Eng. 48(2005) 2237-2243. [126] G.N. Kraai, F. van Zwol, B. Schuur, H.J. Heeres, J.G. de Vries, Two-phase (bio) catalytic reactions in a table-top centrifugal contact separator, Angew. Chem. Int. Ed. 47(2008) 3905-3908. [127] G. Kraai, B. Schuur, F. Van Zwol, H. Van de Bovenkamp, H.J. Heeres, Novel highly integrated biodiesel production technology in a centrifugal contactor separator device, Chem. Eng. J. 154(2009) 384-389. [128] T. Ali, J. Yang, J. Huang, GTAP-PBIO:A GTAP Model and Data Base that Incorporates Biofuels Sector of Pakistan, 2015. [129] M. Hajjari, M. Tabatabaei, M. Aghbashlo, H. Ghanavati, A review on the prospects of sustainable biodiesel production:A global scenario with an emphasis on waste-oil biodiesel utilization, Renew. Sust. Energ. Rev. 72(2017) 445-464. [130] S. Karmee, R. Patria, C. Lin, Techno-economic evaluation of biodiesel production from waste cooking oil-a case study of Hong Kong, Int. J. Mol. Sci. 16(2015) 4362. |
[1] | Xiaojiang Liang, Fengjiao Wu, Qinglong Xie, Zhenyu Wu, Jinjin Cai, Congwen Zheng, Junhong Fu, Yong Nie. Insights into biobased epoxidized fatty acid isobutyl esters from biodiesel: Preparation and application as plasticizer[J]. 中国化学工程学报, 2022, 44(4): 41-50. |
[2] | Qing Shu, Xinyuan Liu, Yanting Huo, Yuhui Tan, Caixia Zhang, Laixi Zou. Construction of a Brönsted-Lewis solid acid catalyst La-PW-SiO2/SWCNTs based on electron withdrawing effect of La(III) on π bond of SWCNTs for biodiesel synthesis from esterification of oleic acid and methanol[J]. 中国化学工程学报, 2022, 44(4): 351-362. |
[3] | Saboura Ashkevarian, Jalil Badraghi, Fatemeh Mamashli, Behdad Delavari, Ali Akbar Saboury. Covalent immobilization and characterization of Rhizopus oryzae lipase on core-shell cobalt ferrite nanoparticles for biodiesel production[J]. 中国化学工程学报, 2021, 37(9): 128-136. |
[4] | Chunxiao Zhang, Yingjie Li, Zhiguo Bian, Wan Zhang, Zeyan Wang. Simultaneous CO2 capture and thermochemical heat storage by modified carbide slag in coupled calcium looping and CaO/Ca(OH)2 cycles[J]. 中国化学工程学报, 2021, 36(8): 76-85. |
[5] | Sunita Malik, Poonam Jangra Darolia, S. K. Garg, V. K. Sharma. Densities and excess molar volumes of mixtures containing diesel, biodiesel and alkanols at temperatures from 288.15 to 313.15 K[J]. 中国化学工程学报, 2021, 34(6): 198-207. |
[6] | Subbaiyan Naveen, Kannappan Panchamoorthy Gopinath, Rajagopal Malolan, Ramesh Sai Jayaraman, Krishnan Aakriti, Jayaseelan Arun. A solar reactor for bio-diesel production from Pongamia oil: Studies on transesterfication process parameters and energy efficiency[J]. 中国化学工程学报, 2021, 40(12): 218-224. |
[7] | Xiaocheng Lin, Youjie Huang, Ling Li, Changshen Ye, Jie Chen, Ting Qiu. Polymeric ionic liquids (PILs) with high acid density: Tunable catalytic performance for biodiesel production[J]. 中国化学工程学报, 2021, 38(10): 266-275. |
[8] | Harrson S. Santana, Alan C. Rodrigues, Mariana G. M. Lopes, Felipe N. Russo, Jo?o L. Silva Jr, Osvaldir P. Taranto. 3D printed millireactors for process intensification[J]. 中国化学工程学报, 2020, 28(1): 180-190. |
[9] | Yuan Wang, Yang Xiao, Guomin Xiao. Sustainable value-added C3 chemicals from glycerol transformations: A mini review for heterogeneous catalytic processes[J]. 中国化学工程学报, 2019, 27(7): 1536-1542. |
[10] | Vlada B. Veljkovi?, Ana V. Veli?kovi?, Jelena M. Avramovi?, Olivera S. Stamenkovi?. Modeling of biodiesel production: Performance comparison of Box-Behnken, face central composite and full factorial design[J]. 中国化学工程学报, 2019, 27(7): 1690-1698. |
[11] | Donglei Mao, Xingguang Zhang, Xiongfei Zhang, Mingmin Jia, Jianfeng Yao. Glucose-derived solid acids and their stability enhancement for upgrading biodiesel via esterification[J]. 中国化学工程学报, 2019, 27(5): 1067-1072. |
[12] | Ch. Chingakham, Asha David, V. Sajith. Fe3O4 nanoparticles impregnated eggshell as a novel catalyst for enhanced biodiesel production[J]. 中国化学工程学报, 2019, 27(11): 2835-2843. |
[13] | Marija R. Miladinovi?, Ivan J. Stojkovi?, Ana V. Veli?kovi?, Olivera S. Stamenkovi?, Ivana B. Bankovi?-Ili?, Vlada B. Veljkovi?. Optimization and kinetic modeling of waste lard methanolysis in a continuous reciprocating plate reactor[J]. 中国化学工程学报, 2019, 27(10): 2481-2490. |
[14] | Behzad Khedri, Mostafa Mostafaei, Seyed Mohammad Safieddin Ardebili. Flow-mode synthesis of biodiesel under simultaneous microwave-magnetic irradiation[J]. 中国化学工程学报, 2019, 27(10): 2551-2559. |
[15] | Harrson S. Santana, João L. Silva Jr, Deborah S. Tortola, Osvaldir P. Taranto. Transesterification of sunflower oil in microchannels with circular obstructions[J]. Chinese Journal of Chemical Engineering, 2018, 26(4): 852-863. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||