[1] T. Eppinger, K. Seidler, M. Kraume, DEM-CFD simulations of fixed bed reactors with small tube to particle diameter ratios, Chem. Eng. J. 166(1) (2011) 324-331. [2] S. Ergun, A.A. Orning, Fluid flow through randomly packed columns and fluidized beds, Ind. Eng. Chem. 41(6) (1949) 1179-1184. [3] A.G. Dixon, Correlations for wall and particle shape effects on fixed bed bulk voidage, Can. J. Chem. Eng. 66(5) (1988) 705-708. [4] M. Nijemeisland, A.G. Dixon, Comparison of CFD simulations to experiment for convective heat transfer in a gas-solid fixed bed, Chem. Eng. J. 82(1-3) (2001) 231-246. [5] M. Giese, K. Rottschafer, D. Vortmeyer, Measured and modeled superficial flow profiles in packed beds with liquid flow, AIChE J 44(2) (1998) 484-490. [6] J.D. Seymour, P.T. Callaghan, Generalized approach to NMR analysis of flow and dispersion in porous media, AIChE J 43(8) (1997) 2096-2111. [7] A.J. Sederman, M.L. Johns, P. Alexander, L.F. Gladden, Structure-flow correlations in packed beds, Chem. Eng. Sci. 53(12) (1998) 2117-2128. [8] M. Rashidi, A. Tompson, T. Kulp, L. Peurrung, 3-D microscopic measurement and analysis of chemical flow and transport in porous media, J. Fluids Eng. 118(3) (1996) 470-480. [9] A.G. Dixon, M. Nijemeisland, CFD as a design tool for fixed-bed reactors, Ind. Eng. Chem. Res. 40(23) (2001) 5246-5254. [10] B. Manz, L.F. Gladden, P.B. Warren, Flow and dispersion in porous media:latticeBoltzmann and NMR studies, AIChE J 45(9) (1999) 1845-1854. [11] B. Ferreol, D.H. Rothman, Lattice-Boltzmann simulations of flow-through Fontainebleau sandstone, Transp. Porous Media 20(1-2) (1995) 3-20. [12] F. Hannsjörg, B. Jürgen, Z. Thomas, G. Emig, Detailed simulation of transport processes in fixed-beds, Ind. Eng. Chem. Res. 44(44) (2005) 6423-6434. [13] M. Nijemeisland, A.G. Dixon, CFD study of fluid flow and wall heat transfer in a fixed bed of spheres, AIChE J 50(5) (2004) 906-921. [14] H.P.A. Calis, J. Nijenhuis, B.C. Paikert, F.M. Dautzenberg, C.M.V.D. Bleek, CFD modelling and experimental validation of pressure drop and flow profile in a novel structured catalytic reactor packing, Chem. Eng. Sci. 56(4) (2001) 1713-1720. [15] G. Alfredo, C. Miguel, M.A. Larrayoz, R. Francesc, E. Eduard, CFD flow and heat transfer in nonregular packings for fixed bed equipment design, Ind. Eng. Chem. Res. 43(22) (2004) 7049-7056. [16] S. Ookawara, M. Kuroki, D. Street, K. Ogawa, High-fidelity DEM-CFD modeling of packed bed reactors for process intensification, Proceedings of European Congress of Chemical Engineering, Copenhagen, 2007. [17] M.E. Taskin, A. Troupel, A.G. Dixon, M. Nijemeisland, E.H. Stitt, Flow, transport, and reaction interactions for cylindrical particles with strongly endothermic reactions, Ind. Eng. Chem. Res. 49(19) (2010) 9026-9037. [18] A.G. Dixon, M.E. Taskin, M. Nijemeisland, E.H. Stitt, CFD method to couple three-dimensional transport and reaction inside catalyst particles to the fixed bed flow field, Ind. Eng. Chem. Res. 49(19) (2010) 9012-9025. [19] H. Bai, J. Theuerkauf, P.A. Gillis, P.M. Witt, A coupled DEM and CFD simulation of flow field and pressure drop in fixed bed reactor with randomly packed catalyst particles, Ind. Eng. Chem. Res. 48(8) (2009) 4060-4074. [20] T. Atmakidis, E.Y. Kenig, CFD-based analysis of the wall effect on the pressure drop in packed beds with moderate tube/particle diameter ratios in the laminar flow regime, Chem. Eng. J. 155(1-2) (2009) 404-410. [21] A.G. Dixon, M. Nijemeisland, E.H. Stitt, Systematic mesh development for 3D CFD simulation of fixed beds:Contact points study, Comput. Chem. Eng. 48(2) (2013) 135-153. [22] C.S. Peskin, Flow patterns around heart valves:A numerical method, J. Comput. Phys. 10(2) (1972) 252-271. [23] R. Verzicco, J. Mohd-Yusof, P. Orlandi, D. Haworth, Large eddy simulation in complex geometric configurations using boundary body forces, AIAA J. 38(3) (2000) 427-433. [24] E.A. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations, J. Comput. Phys. 161(1) (2000) 35-60. [25] R. Mittal, V. Seshadri, H.S. Udaykumar, Flutter, tumble and vortex induced autorotation, Theor. Comput. Fluid Dyn. 17(3) (2004) 165-170. [26] Y.H. Tseng, J.H. Ferziger, A ghost-cell immersed boundary method for flow in complex geometry, J. Comput. Phys. 192(2) (2003) 593-623. [27] P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies, Geotechnique 30(30) (1979) 331-336. [28] H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics-The Finite Volume Method, Wiley, New York, 1995. [29] V. Yakhot, S.A. Orszag, Renormalization group analysis of turbulence. I. Basic theory, J. Sci. Comput. 1(1) (1986) 3-51. [30] A.D. Klerk, Voidage variation in packed beds at small column to particle diameter ratio, AICHE J. 49(8) (2003) 2022-2029. [31] B. Eisfeld, K. Schnitzlein, The influence of confining walls on the pressure drop in packed beds, Chem. Eng. Sci. 56(57) (2001) 4321-4329. [32] W. Reichelt, Zur Berechnung des Druckverlustes einphasig durchstromter Kugelund Zylindersch uuml ttungen, Chem. Ing. Tech. 44(1972) 1068-1071. [33] T. Yuge, Experiments on heat transfer from spheres including combined natural and forced convection, J. Heat Transf. (3) (1960) 214-220. [34] W. Ranz, W. Marshall, Evaporation from drops, Chem. Eng. Prog. 48(3) (1952) 141-146. [35] H. Kramers, Heat transfer from sphere to flowing media, Physica 12(2) (1946) 61-80. [36] S. Whitaker, Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles, AIChE J 18(2) (1972) 361-371. [37] S. Romkes, F. Dautzenberg, C. Bleek, H. Calis, CFD modelling and experimental validation of particle-to-fluid mass and heat transfer in a packed bed at very low channel to particle diameter ratio, Chem. Eng. J. 96(1-3) (2003) 3-13. |