[1] E. Frauendorfer, A. Wolf, W.D. Hergeth, Polymerization online monitoring, Chem. Eng. Technol. 33(11) (2010) 1767-1778.[2] B. Hu, P. Angeli, O.K. Matar, C.J. Lawrence, G.F. Hewitt, Evaluation of drop size distribution from chord length measurements, AIChE J. 52(3) (2006) 931-939.[3] S. Maab, S. Wollny, A. Voigt, M. Kraume, Experimental comparison of measurement techniques for drop size distributions in liquid/liquid dispersions, Exp. Fluids 50(2) (2011) 259-269.[4] A.W. Pacek, I.P.T. Moore, A.W. Nienow, R.V. Calabrese, Video technique for measuring dynamics of liquid-liquid dispersion during phase inversion, AIChE J. 40(12) (1994) 1940-1949.[5] A.W. Pacek, A.W. Nienow, Measurement of drop size distribution in concentrated liquid-liquid dispersions-Video and capillary techniques, Chem. Eng. Res. Des. 73(A5) (1995) 512-518.[6] R.P. Panckow, L. Reinecke, M.C. Cuellar, S. Maab, Photo-optical in-situ measurement of drop size distributions:Applications in research and industry, Oil Gas Sci. Technol. Rev. IFP Energies Nouv. 72(3) (2017) 14.[7] J. Heinrich, J. Ulrich, Application of laser-backscattering instruments for in situ monitoring of crystallization processes-A review, Chem. Eng. Technol. 35(6) (2012) 967-979.[8] O. Gnotke, Experimentelle und theoretische Untersuchungen zur Bestimmung von veranderlichen Blasengroben und Blasengrobenverteilungen in turbulenten Gas-Flussigkeits-Stromungen, Vol. phd TU Darmstadt, 2004.[9] H.G. Merkus, Particle Size Measurements-Fundamentals, Practice, Quality, vol. 1, Springer Netherlands, 2009534.[10] S. Wollny, Experimentelle und numerische Untersuchungen zur Partikelbeanspruchung in geruhrten (Bio-)Reaktoren, Technische Universitat Berlin, Kothen, 2010177.[11] B. Junker, Measurement of bubble and pellet size distributions:Past and current image analysis technology, Bioprocess Biosyst. Eng. 29(3) (2006) 185-206.[12] T.G. Leighton, K. Baik, J. Jiang, The use of acoustic inversion to estimate the bubble size distribution in pipelines, Proc. R. Soc. Lond. A 468(2145) (2012) 2461-2484.[13] P.H. Calderbank, Physical rate processes in industrial fermentation. Part I:The interfacial area in gas-liquid contacting with mechanical agitation, Trans. Inst. Chem. Eng. (36) (1958) 443-463.[14] G. Montante, D. Horn, A. Paglianti, Gas-liquid flow and bubble size distribution in stirred tanks, Chem. Eng. Sci. 63(8) (2008) 2107-2118.[15] M. Barigou, M. Greaves, Bubble size distributions in a mechanically agitated gas-liquid contactor, Chem. Eng. Sci. 47(8) (1992) 2009-2025.[16] M. Laakkonen, M. Honkanen, P. Saarenrinne, J. Aittamaa, Local bubble size distributions, gas/liquid interfacial areas and gas holdups in a stirred vessel with particle image velocimetry, Chem. Eng. J. 109(1-3) (2005) 37-47.[17] H. Braeske, G. Brenn, J. Domnick, F. Durst, A. Melling, M. Ziema, Extended phaseDoppler anemometry for measurements in three-phase flows, Chem. Eng. Technol. 21(5) (1998) 415-420.[18] A.L. Tassin, D.E. Nikitopoulos, Non-intrusive measurements of bubble size and velocity, Exp. Fluids 19(2) (1995) 121-132.[19] M. Barigou, M. Greaves, A capillary suction prove for bubble size measurement, Meas. Sci. Technol. 2(4) (1991) 318.[20] V. Ilchenko, R. Maurus, T. Sattelmayer, Influence of the operating conditions on the bubble characteristics in an aerated stirred vessel, in:M. Sommerfeld (Ed.), Bubbly Flows:Analysis, Modelling and Calculation, Springer Berlin Heidelberg, Berlin, Heidelberg 2004, pp. 307-318.[21] D. Petrak, Simultaneous measurement of particle size and particle velocity by the spatial filtering technique, Part. Part. Syst. Charact. 19(6) (2002) 391-400.[22] M. Schluter, Local measurement techniques for multiphase flows, Chem. Ing. Tech. 83(7) (2011) 992-1004(in German).[23] C. Heffels, R. Polke, M. Radle, B. Sachweh, M. Schafer, N. Scholz, Control of particulate processes by optical measurement techniques, Part. Part. Syst. Charact. 15(5) (1998) 211-218.[24] A. Ruf, J. Worlitschek, M. Mazzotti, Modeling and experimental analysis of PSD measurements through FBRM, Part. Part. Syst. Charact. 17(4) (2000) 167-179.[25] B. Sachweh, C. Heffels, R. Polke, M. Radle, Light scattering sensor for in-line measurements of mean particle sizes in suspensions, 7th European Symposium on Particle Characterization, PARTEC, Nuremberg 1998, p. 98.[26] O.S. Agimelen, A. Jawor-Baczynska, J. McGinty, J. Dziewierz, C. Tachtatzis, A. Cleary, I. Haley, C. Michie, I. Andonovic, J. Sefcik, A.J. Mulholland, Integration of in situ imaging and chord length distribution measurements for estimation of particle size and shape, Chem. Eng. Sci. 144(Supplement C) (2016) 87-100.[27] R.P. Panckow, G. Comande, S. Maab, M. Kraume, Determination of particle size distributions in multiphase systems containing nonspherical fluid particles, Chem. Eng. Technol. 38(11) (2015) 2011-2016.[28] A.W. Pacek, C.C. Man, A.W. Nienow, On the Sauter mean diameter and size distributions in turbulent liquid/liquid dispersions in a stirred vessel, Chem. Eng. Sci. 53(11) (1998) 2005-2011.[29] T. Pilhofer, H.D. Miller, Photoelectric method of measuring size distribution of moderately dispersed drops in an immiscible binary liquid system, Chem. Ing. Tech. 44(5) (1972) 295-300.[30] A.W. Nienow, Break-up, coalescence and catastrophic phase inversion in turbulent contactors, Adv. Colloid Interf. Sci. 108(2004) 95-103.[31] F.B. Alban, S. Sajjadi, M. Yianneskis, Dynamic tracking of fast liquid-liquid dispersion processes with a real-time in-situ optical technique, Chem. Eng. Res. Des. 82(A8) (2004) 1054-1060.[32] G. Wang, X. Li, C. Yang, G. Li, Z.-S. Mao, New vision probe based on telecentric photography and its demonstrative applications in a multiphase stirred reactor, Ind. Eng. Chem. Res. 56(23) (2017) 6608-6617.[33] Y. Xiao, X. Li, C. Yang, J. Shen, Z.-S. Mao, Particle scattering photography approach for poorly illuminated multiphase reactors. Ⅱ:experimental validation and optimization, Ind. Eng. Chem. Res. 57(25) (2018) 8405-8412.[34] J.A. Boxall, C.A. Koh, E.D. Sloan, A.K. Sum, D.T. Wu, Measurement and calibration of droplet size distributions in water-in-oil emulsions by particle video microscope and a focused beam reflectance method, Ind. Eng. Chem. Res. 49(3) (2010) 1412-1418.[35] J. Lovick, A.A. Mouza, S.V. Paras, G.J. Lye, P. Angeli, Drop size distribution in highly concentrated liquid-liquid dispersions using a light back scattering method, J. Chem. Technol. Biotechnol. 80(5) (2005) 545-552.[36] F. Folttmann, K. Knop, P. Kleinebudde, M. Pein, In-line spatial filtering velocimetry for particle size and film thickness determination in fluidized-bed pellet coating processes, Eur. J. Pharm. Biopharm. 88(3) (2014) 931-938.[37] E.K. Todtenhaupt, Blasengrobenverteilung in technischen Begasungsapparaten, Chem. Ing. Tech. 43(6) (1971) 336-342.[38] S.S. Alves, C.I. Maia, J.M.T. Vasconcelos, A.J. Serralheiro, Bubble size in aerated stirred tanks, Chem. Eng. J. 89(1-3) (2002) 109-117.[39] F. Mayinger, O. Feldmann, Bubble dispersion in aerated stirred vessels, in:M. Sommerfeld (Ed.), Bubbly Flows:Analysis, Modelling and Calculation, Springer Berlin Heidelberg, Berlin, Heidelberg 2004, pp. 319-335.[40] D. Marquard, A. Enders, G. Roth, U. Rinas, T. Scheper, P. Lindner, In situ microscopy for online monitoring of cell concentration in Pichia pastoris cultivations, J. Biotechnol. 234(2016) 90-98.[41] A. Lemoine, F. Delvigne, A. Bockisch, P. Neubauer, S. Junne, Tools for the determination of population heterogeneity caused by inhomogeneous cultivation conditions, J. Biotechnol. 251(2017) 84-93.[42] A. Bluma, T. Hopfner, P. Lindner, C. Rehbock, S. Beutel, D. Riechers, B. Hitzmann, T. Scheper, In-situ imaging sensors for bioprocess monitoring:State of the art, Anal. Bioanal. Chem. 398(6) (2010) 2429-2438.[43] P. Wiedemann, J.S. Guez, H.B. Wiegemann, F. Egner, J.C. Quintana, D. AsanzaMaldonado, M. Filipaki, J. Wilkesman, C. Schwiebert, J.P. Cassar, In situ microscopic cytometry enables noninvasive viability assessment of animal cells by measuring entropy states, Biotechnol. Bioeng. 108(12) (2011) 2884-2893.[44] V. Camisard, J. Brienne, H. Baussart, J. Hammann, H. Suhr, Inline characterization of cell concentration and cell volume in agitated bioreactors using in situ microscopy:Application to volume variation induced by osmotic stress, Biotechnol. Bioeng. 78(1) (2002) 73-80.[45] D. Marquard, C. Schneider-Barthold, S. Dusterloh, T. Scheper, P. Lindner, Online monitoring of cell concentration in high cell density Escherichia coli cultivations using in situ microscopy, J. Biotechnol. 259(2017) 83-85.[46] V.L. Belini, P. Wiedemann, H. Suhr, In situ microscopy:A perspective for industrial bioethanol production monitoring, J. Microbiol. Methods 93(3) (2013) 224-232.[47] H. Suhr, A.M. Herkommer, In situ microscopy using adjustment-free optics, J. Biomed. Opt. 20(11) (2015), 116007.[48] S. Bonk, M. Sandor, F. Rudinger, B. Tscheschke, A. Prediger, A. Babitzky, D. Solle, S. Beutel, T. Scheper, In-situ microscopy and 2D fluorescence spectroscopy as online methods for monitoring CHO cells during cultivation, BMC Proc. 5(Suppl. 8) (2011) P76.[49] J.S. Guez, J.P. Cassar, F. Wartelle, P. Dhulster, H. Suhr, Real time in situ microscopy for animal cell-concentration monitoring during high density culture in bioreactor, J. Biotechnol. 111(3) (2004) 335-343.[50] P. Wiedemann, M. Worf, H.B. Wiegemann, F. Egner, C. Schwiebert, J. Wilkesman, J.S. Guez, J.C. Quintana, D. Assanza, H. Suhr, On-line and real time cell counting and viability determination for animal cell process monitoring by in situ microscopy, BMC proceedings, BioMed Central Ltd., 2011[51] S. Sato, A. Rancourt, Y. Sato, M.S. Satoh, Single-cell lineage tracking analysis reveals that an established cell line comprises putative cancer stem cells and their heterogeneous progeny, Sci. Rep. 6(2016) 23328.[52] A. Saadatpour, S. Lai, G. Guo, G.-C. Yuan, Single-cell analysis in cancer genomics, Trends Genet. 31(10) (2015) 576-586.[53] Z. Liu, Luke D. Lavis, E. Betzig, Imaging live-cell dynamics and structure at the singlemolecule level, Mol. Cell 58(4) (2015) 644-659.[54] A. Ettinger, T. Wittmann, Chapter 5-Fluorescence live cell imaging, in:J.C. Waters, T. Wittman (Eds.), Methods in Cell Biology, Academic Press 2014, pp. 77-94.[55] C. Brasko, K. Smith, C. Molnar, N. Farago, L. Hegedus, A. Balind, T. Balassa, A. Szkalisity, F. Sukosd, K. Kocsis, B. Balint, L. Paavolainen, M.Z. Enyedi, I. Nagy, L.G. Puskas, L. Haracska, G. Tamas, P. Horvath, Intelligent image-based in situ singlecell isolation, Nat. Commun. 9(1) (2018) 226.[56] H. Aakre, T. Solbakken, R.B. Schuller, Online measurement of droplet characteristics in a flowing crude oil/water system using an endoscope and a CCD-NIR camera, 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, ENEA Casaccia, Institute of Thermal-Fluid Dynamics, University of Pisa, Pisa, 2004.[57] A. Pankewitz, C. Behrens, In-line Crystal size analysis with a highly adaptable and industrially approved sensor based ultrasonic Extinction, 15th International Symposium on Industrial Crystallization, Sympatec GmbH, Sorento, Italy, 2002.[58] G. Zhou, A. Moment, J. Cuff, W. Schafer, C. Orella, E. Sirota, X. Gong, C. Welch, Process development and control with recent new FBRM, PVM, and IR, Org. Process. Res. Dev. 19(1) (2015) 227-235.[59] S.T. Schorsch, Imaging systems, analysis protocols, and modelling tools for particle shape monitoring for crystallization, PhD Thesis, Friedrich Alexander University Erlangen, Germany, 1984.[60] A. Amokrane, S. Maab, F. Lamadie, F. Puel, S. Charton, On droplets size distribution in a pulsed column. Part I:In-situ measurements and corresponding CFD-PBE simulations, Chem. Eng. J. 296(Supplement C) (2016) 366-376.[61] S.T. Schorsch, Imaging Systems, Analysis Protocols, and Modelling Tools for Particle Shape Monitoring for Crystallization, (Chemical and Biological Engineering, Friedrich Alexander University Erlangen. Vol. phd) ETH Zurich, Zurich, 2014.[62] C. Demant, B. Streicher-Abel, Inustrielle Bildverarbeitung, 2011.[63] I. Group, ISO/Guide 35:2017(en)-Reference materials-Guidance for characterization and assessment of homogeneity and stability,[cited 201819.04.]; Available from:https://www.iso.org/obp/ui/#iso:std:iso:guide:35:ed-4:v1:en 2018.[64] K.R. Castleman, The Image Processing Handbook, second edition. By John C Russ, Bioimaging, vol. 3(3), 1995145-146.[65] J. Ilonen, R. Juranek, T. Eerola, L. Lensu, M. Dubska, P. Zemcik, H. Kalviainen, Comparison of bubble detectors and size distribution estimators, Pattern Recogn. Lett. 101(2018) 60-66.[66] N. Strokina, J. Matas, T. Eerola, L. Lensu, H. Kalviainen, Detection of bubbles as concentric circular arrangements, Mach. Vis. Appl. 27(3) (2016) 387-396.[67] L.M.R. Bras, E.F. Gomes, M.M.M. Ribeiro, M.M.L. Guimaraes, Drop distribution determination in a liquid-liquid dispersion by image processing, Int. J. Chem. Eng. (2009), 746439. https://doi.org/10.1155/2009/746439(pp. 6).[68] S. Maab, J. Rojahn, R. Hansch, M. Kraume, Automated drop detection using image analysis for online particle size monitoring in multiphase systems, Comput. Chem. Eng. 45(2012) 27-37.[69] A. Buffo, V. Alopaeus, Experimental determination of size distributions:Analyzing proper sample sizes, Meas. Sci. Technol. 27(4) (2016), 045301.[70] J. Ritter, M. Kraume, On-line measurement technique for drop size distributions in liquid/liquid systems at high dispersed phase fractions, Chem. Eng. Technol. 23(7) (2000) 579-582.[71] A. Rojas-Dominguez, A. Holguin-Salas, E. Galindo, G. Corkidi, Gradient-directionpattern transform for automated measurement of oil drops in images of multiphase dispersions, Chem. Eng. Technol. 38(2) (2015) 327-335.[72] R. Gopalan, D. Jacobs, Comparing and combining lighting insensitive approaches for face recognition, Comput. Vis. Image Underst. 114(1) (2010) 135-145.[73] R. Kacker, S. Maab, J. Emmerich, H. Kramer, Application of inline imaging for monitoring crystallization process in a continuous oscillatory baffled crystallizer, AIChE J. 64(7) (2018),https://doi.org/10.1002/aic.16145.[74] A. Soare, S.A. Perez Escobar, A.I. Stankiewicz, M. Rodriguez Pascual, H.J.M. Kramer, 2-D flow and temperature measurements in a multiphase airlift crystallizer, Ind. Eng. Chem. Res. 52(34) (2013) 12212-12222.[75] S. Maab, N. Paul, M. Kraume, Influence of the dispersed phase fraction on experimental and predicted drop size distributions in breakage dominated stirred liquid-liquid systems, Chem. Eng. Sci. 76(2012) 140-153.[76] V. Alopaeus, J. Koskinen, K. I. Keskinen, J. Majander, Simulation of the population balances for liquid-liquid systems in a nonideal stirred tank. Part 2-Parameter fitting and the use of the multiblock model for dense dispersions, Chem. Eng. Sci. 57(10) (2002) 1815-1825.[77] J.N. Sangshetti, M. Deshpande, Z. Zaheer, D.B. Shinde, R. Arote, Quality by design approach:Regulatory need, Arab. J. Chem. 10(Supplement 2) (2017) S3412-S3425.[78] D. Sarkar, X.-T. Doan, Z. Ying, R. Srinivasan, In situ particle size estimation for crystallization processes by multivariate image analysis, Chem. Eng. Sci. 64(1) (2009) 9-19.[79] A.-M. Marba-Ardebol, J. Emmerich, P. Neubauer, S. Junne, Single-cell-based monitoring of fatty acid accumulation in Crypthecodinium cohnii with three-dimensional holographic and in situ microscopy, Process Biochem. 52(Supplement C) (2017) 223-232.[80] A.-M. Marba-Ardebol, J. Emmerich, M. Muthig, P. Neubauer, S. Junne, Real-time monitoring of the budding index in Saccharomyces cerevisiae batch cultivations with in situ microscopy, Microb. Cell Factories (2018) 34,https://doi.org/10.1002/mren.201700015.[81] J. Cocke, S. Maab, Cross linking between the baffling effect and phase inversion during liquid-liquid monomer mixing, Macromol. React. Eng. 11(4) (2017) (p. 1700015-n/a).[82] T.H. Ngo, A. Schumpe, Oxygen absorption into stirred emulsions of n-alkanes, Int. J. Chem. Eng. 2012(2012) 7.[83] L. Schilder, S. Maab, A. Jess, Effective and intrinsic kinetics of liquid-phase isobutane/2-butene alkylation catalyzed by chloroaluminate ionic liquids, Ind. Eng. Chem. Res. 52(5) (2013) 1877-1885.[84] E. Aksamija, C. Weinlander, R. Sarzio, M. Siebenhofer, The Taylor-Couette disc contactor:A novel apparatus for liquid/liquid extraction, Sep. Sci. Technol. 50(18) (2015) 2844-2852.[85] A.S. Heeres, K. Schroen, J.J. Heijnen, L.A.M. van der Wielen, M.C. Cuellar, Fermentation broth components influence droplet coalescence and hinder advanced biofuel recovery during fermentation, Biotechnol. J. 10(8) (2015) 1206-1215.[86] L. Hohl, N. Paul, M. Kraume, Dispersion conditions and drop size distributions in stirred micellar multiphase systems, Chem. Eng. Process. Process Intensif. 99(Supplement C) (2016) 149-154.[87] T. Skale, L. Hohl, M. Kraume, A. Drews, Feasibility of w/o Pickering emulsion ultrafiltration, J. Membr. Sci. 535(Supplement C) (2017) 1-9. |