[1] M. Rahimi, P. Valeh-E-Sheyda, M.A. Parsamoghadam, N. Azimi, H. Adibi, LASP and Villermaux/Dushman protocols for mixing performance in microchannels:Effect of geometry on micromixing characterization and size reduction, Chem. Eng. Process. 85(2014) 178-186. [2] D.M. Murphy, A. Manerbino, M. Parker, J. Blasi, R.J. Kee, N.P. Sullivan, Methane steam reforming in a novel ceramic microchannel reactor, Int. J. Hydrog. Energy 38(2013) 8741-8750. [3] M. Zanfir, M. Baldea, P. Daoutidis, Optimizing the catalyst distribution for countercurrent methane steam reforming in plate reactors, AIChE J. 57(2011) 2518-2528. [4] L. Licklider, W.G. Kuhr, Optimization of online peptide mapping by capillary zone electrophoresis, Anal. Chem. 66(1994) 4400-4407. [5] J. Yoshida, A. Nagaki, T. Yamada, Flash chemistry:Fast chemical synthesis by using microreactors, Chem. Eur. J. 14(2008) 7450-7459. [6] J. Pelleter, F. Renaud, Facile, fast and safe process development of nitration and bromination reactions using continuous flow reactors, Org. Process. Res. Dev. 13(2009) 698-705. [7] X. Zhang, S. Stefanick, F.J. Villani, Application of microreactor technology in process development, Org. Process. Res. Dev. 8(2004) 455-460. [8] M. Kashid, O. Detraz, M.S. Moya, I. Yuranov, P. Prechtl, J. Membrez, A. Renken, L. Kiwi-Minsker, Micro-batch reactor for catching intermediates and monitoring kinetics of rapid and exothermic homogeneous reactions, Chem. Eng. J. 214(2013) 149-156. [9] L. Yang, N. Dietrich, K. Loubière, C. Gourdon, G. Hébrard, Visualization and characterization of gas-liquid mass transfer around a Taylor bubble right after the formation stage in microreactors, Chem. Eng. Sci. 143(2016) 364-368. [10] B. Jiang, A.J. Santis-Alvarez, P. Muralt, D. Poulikakos, N. Borhani, J.R. Thome, T. Maeder, Design and packaging of a highly integrated microreactor system for high-temperature on-board hydrogen production, Chem. Eng. J. 275(2015) 206-219. [11] L. Li, R. Chen, Q. Liao, X. Zhu, G. Wang, D. Wang, High surface area optofluidic microreactor for redox mediated photocatalytic water splitting, Int. J. Hydrog. Energy 39(2014) 19270-19276. [12] X. Yao, Y. Zhang, L. Du, J. Liu, J. Yao, Review of the applications of microreactors, Renew. Sust. Energ. Rev. 47(2015) 519-539. [13] C. Yao, Z. Dong, Y. Zhao, G. Chen, Gas-liquid flow and mass transfer in a microchannel under elevated pressures, Chem. Eng. Sci. 123(2015) 137-145. [14] F. Bally, C.A. Serra, V. Hessel, G. Hadziioannou, Micromixer-assisted polymerization processes, Chem. Eng. Sci. 66(2011) 1449-1462. [15] M. Jiang, Y.E.D. Li, H.H. Tung, R.D. Braatz, Effect of jet velocity on crystal size distribution from antisolvent and cooling crystallizations in a dual impinging jet mixer, Chem. Eng. Process. 97(2015) 242-247. [16] C. Dong, J.S. Zhang, K. Wang, G.S. Luo, Micromixing performance of nanoparticle suspensions in a micro-sieve dispersion reactor, Chem. Eng. J. 253(2014) 8-15. [17] J. Aubin, M. Ferrando, V. Jiricny, Current methods for characterising mixing and flow in microchannels, Chem. Eng. Sci. 65(2010) 2065-2093. [18] J.S. Zhang, K. Wang, Y.C. Lu, G.S. Luo, Characterization and modeling of micromixing performance in micropore dispersion reactors, Chem. Eng. Process. 49(2010) 740-747. [19] M.C. Fournier, L. Falk, J. Villermaux, A new parallel competing reaction system for assessing micromixing efficiency-Experimental approach, Chem. Eng. Sci. 51(1996) 5053-5064. [20] Z. Gao, J. Han, Y. Bao, Z. Li, Micromixing efficiency in a T-shaped confined impinging jet reactor, Chin. J. Chem. Eng. 23(2015) 350-355. [21] N. Kockmann, T. Kiefer, M. Engler, P. Woias, Convective mixing and chemical reactions in microchannels with high flow rates, Sensors Actuators B Chem. 117(2006) 495-508. [22] A. Soleymani, E. Kolehmainen, I. Turunen, Numerical and experimental investigations of liquid mixing in T-type micromixers, Chem. Eng. J. 135(2008) S219-S228. [23] Y. Ren, W.W.F. Leung, Flow and mixing in rotating zigzag microchannel, Chem. Eng. J. 215-216(2013) 561-578. [24] Z. Liu, L. Guo, T. Huang, L. Wen, J. Chen, Experimental and CFD studies on the intensified micromixing performance of micro-impinging stream reactors built from commercial T-junctions, Chem. Eng. Sci. 119(2014) 124-133. [25] Q.C. Zhang, Z.W. Liu, X.H. Zhu, L.X. Wen, Q.-F. Zhu, K. Guo, J.F. Chen, Application of microimpinging stream reactors in the preparation of CuO/ZnO/Al2O3 catalysts for methanol synthesis, Ind. Eng. Chem. Res. 54(2015) 8874-8882. [26] P. Guichardon, L. Falk, Characterisation of micromixing efficiency by the iodide-iodate reaction system. Part I:Experimental procedure, Chem. Eng. Sci. 55(2000) 4233-4243. [27] M. Rahimi, N. Azimi, F. Parvizian, Using microparticles to enhance micromixing in a high frequency continuous flow sonoreactor, Chem. Eng. Process. 70(2013) 250-258. [28] M. Kashid, A. Renken, L. Kiwi-Minsker, Mixing efficiency and energy consumption for five generic microchannel designs, Chem. Eng. J. 167(2011) 436-443. [29] P. Guichardon, L. Falk, J. Villermaux, Characterisation of micromixing efficiency by the iodide-iodate reaction system. Part Ⅱ:Kinetic study, Chem. Eng. Sci. 55(2000) 4245-4253. [30] J.R. Bourne, Comments on the iodide/iodate method for characterising micromixing, Chem. Eng. J. 140(2008) 638-641. [31] A. Kölbl, M. Kraut, R. Dittmeyer, Kinetic investigation of the Dushman reaction at concentrations relevant to mixing studies in microstructured cyclone type mixers, Chem. Eng. Sci. 101(2013) 454-460. [32] A. Kölbl, S. Schmidt-Lehr, The iodide iodate reaction method:The choice of the acid, Chem. Eng. Sci. 65(2010) 1897-1901. [33] J.M. Commenge, L. Falk, Villermaux-Dushman protocol for experimental characterization of micromixers, Chem. Eng. Process. 50(2011) 979-990. [34] M.C. Fournier, L. Falk, J. Villermaux, A new parallel competing reaction system for assessing micromixing efficiency-Determination of micromixing time by a simple mixing model, Chem. Eng. Sci. 51(1996) 5187-5192. [35] C.I. Liu, D.J. Lee, Micromixing effects in a couette flow reactor, Chem. Eng. Sci. 54(1999) 2883-2888. [36] J.Z. Fang, D.J. Lee, Micromixing efficiency in static mixer, Chem. Eng. Sci. 56(2001) 3797-3802. [37] P.S. Virk, Drag reduction fundamentals, AIChE J. 21(1975) 625-656. [38] V. Yakhot, S.A. Orszag, Renormalization group analysis of turbulence. I. Basic theory, J. Sci. Comput. 1(1986) 3-51. [39] Fluent, Inc., ANSYS FLUENT 14 User's Guide, 2011. https://scholar.google.com/scholar_lookup?title=TheDry%20Guide&publication_year=2011&author=Ansys%20Fluent%2014.0. [40] M. Salmhofer, The Renormalization Group, Springer, Berlin, 1999. |