[1] A. Novikova, N. Perova, O. Chupakhin, Assessment of phosphogypsum impact on the salt-marshes of the Tinto river (SW Spain):Role of natural attenuation processes, Mar. Pollut. Bull. 62(2011) 2787-2796. [2] M. Singh, Treating waste phosphogypsum for cement and plaster manufacture, Cem. Concr. Res. 32(2002) 1033-1038. [3] Z. Fang, P. Ning, Y. Yang, L. Ma, W. Zhang, H. Zhang, Influence factors of deoxidizing phosphogypsum by compound reducing agent, Chem. Ind. Eng. Prog. 28(2009) 522-527. [4] M. Al-Hwaiti, J. Ranville, P. Ross, Bioavailability and mobility of trace metals in phosphogypsum from Aqaba and Eshidiya, Jordan, Chem. Erde-Geochem. 70(2010) 283-291. [5] F. Mohammed, W. Biswas, H. Yao, M. Tade, Sustainability assessment of symbiotic processes for the reuse of phosphogypsu, J. Clean. Prod. 188(2018) 497-507. [6] Q. Dai, N. Ren, L. Ma, P. Ning, G. Qu, Z. Guo, L. Xie, Research on dewaterability and properties of sewage sludge under modified phosphogypsum and acetic acid pretreatments, Bioresour. Technol. 264(2018) 268-276. [7] Q. Dai, L. Ma, N. Ren, P. Ning, Z. Guo, L. Xie, Haijun Gao, Investigation on extracellular polymeric substances, sludge flocs morphology, bound water release and dewatering performance of sewage sludge under pretreatment with modified phosphogypsum, Water Res. 142(2018) 337-346. [8] J. Yang, L. Ma, S. Dong, H. Liu, S. Zhao, X. Cui, D. Zheng, J. Yang, Theoretical and experimental demonstration of lignite chemical looping gasification of phosphogypsum oxygen carrier for syngas generation, Fuel 194(2017) 448-459. [9] J. Yang, L. Ma, D. Zheng, S. Zhao, Y. Peng, Reaction mechanism for syngas preparation by lignite chemical looping gasification using phosphogypsum oxygen carrier, Energy Fuel 32(2018) 7857-7867. [10] J. Yang, L. Ma, J. Yang, H. Xiang, H. Liu, Z. Guo, Mechanism of lignite-to-pure syngas low temperature chemical looping gasification synergistic in situ S capture, Fuel 222(2018) 675-686. [11] S. Zhao, C. Li, L. Ma, D. Wang, J. Yang, Y. Peng, L. Wang, Process characteristics of synthesis calcium carbonate using desulfurization gypsum in integrated reaction and separation equipment, Ind. Eng. Chem. Res. 56(2017) 13945-13954. [12] S. Zhao, L. Ma, D. Wang, J. Yang, Y. Peng, L. Wang, Sulfur-looping mechanism for the two-step cyclic process of fluidized-bed CO2 capture and phosphogypsum thermal decomposition assisted by H2S, Energy Fuel 31(2017) 12582-12593. [13] S. Zhao, L. Ma, J. Yang, D. Zheng, H. Liu, J. Yang, Mechanism of CO2 capture technology based on the phosphogypsum reduction thermal decomposition process, Energy Fuel 31(2017) 9824-9832. [14] D. Zheng, L. Ma, R. Wang, J. Yang, Q. Dai, Decomposing properties of phosphogypsum with iron addition under two-step cycle multi-atmosphere control in fluidised bed, Waste Manag. Res. 36(2018) 183-193. [15] D. Zheng, L. Ma, R. Wang, J. Yang, Q. Dai, Research on thermal decomposing properties of phosphogypsum with Fe addition under multi-atmosphere control, Thermochim. Acta 661(2018) 59-66. [16] C. Bale, E. Bélisle, P. Chartrand, S. Eriksson, G. Decterov, FactSage thermochemical software and databases, 2010-2016, Calphad 54(2016) 35-53. [17] C. Bale, E. Bélisle, P. Chartrand, S. Decterov, G. Eriksson, K. Hack, FactSage thermochemical software and databases-recent developments, Calphad 33(2009) 295-311. [18] J. Xu, G. Yu, X. Liu, F. Zhao, X. Chen, F. Wang, Investigation on the high-temperature flow behavior of biomass and coal blended ash, Bioresour. Technol. 166(2014) 494-499. [19] J. Dyk, M. Keyser, Influence of discard mineral matter on slag-liquid formation and ash melting properties of coal-A FACTSAGETM simulation study, Fuel 116(2014) 834-840. [20] J. Yang, L. Ma, J. Tang, H. Liu, B. Zhu, Y. Lian, X. Cui, Chemical thermodynamics analysis for in-situ gasification chemical looping combustion of lignite with phosphogypsum for syngas, Appl. Therm. Eng. 112(2017) 516-522. [21] C. Bale, P. Chartrand, S. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melançon, A. Pelton, S. Petersen, FactSage thermochemical software and databases pergamon, Calphad 26(2002) 189-220. [22] P. Lawrence, S. Reinhold, V. Kalpit, K. Liza, J. Rohan, M. Jörg, F. Terry, Sulfur capture by fly ash in air and oxy-fuel pulverized fuel combustion, Energy Fuel 28(2014) 5472-5479. [23] S. Chakravarty, A. Mohanty, A. Banerjee, R. Tripathy, G. Mandal, M. Basariya, M. Sharma, Composition, mineral matter characteristics and ash fusion behavior of some Indian coals, Fuel 150(2015) 96-101. [24] L. Ma, P. Ning, S. Zheng, X. Niu, W. Zhang, Y. Du, Reaction mechanism and kinetic analysis of the decomposition of phosphogypsum via a solid-state reaction, Ind. Eng. Chem. Res. 49(2010) 3597-3602. [25] Y. Du, L. Ma, S. Zheng, X. Niu, J. Wang, Effect of calcium chloride on the reductive decomposition of phosphogypsum with carbon monoxide, J. Anhui Agric. Sci. 38(2010) 1990-1991. [26] Q. Fu, S. Lou, X. Ma, X. Wang, Z. Zhang, X. Wang, L. Yang, Impurities removal from phosphogypsum by leaching neutralization method, Inorg. Chem. Ind. 47(2015) 44-47. [27] J. Li, J. Zhou, J. Zhu, S. Xia, J. Ge, J. Shang, W. Cui, X. Liu, Mechanism and model of ammonia-based carbon dioxide trapping enhanced by gypsum particles, CIESC J. 66(2015) 3218-3224. [28] B. Yan, L. Ma, L. Xie, J. Ma, Z. Zi, X. Yan, Reaction mechanism for iron catalyst in the process of phosphogypsum decomposition, Ind. Eng. Chem. Res. 52(2013) 17383-17389. [29] B. Yan, L. Ma, J. Ma, Z. Zi, X. Yan, Mechanism analysis of Ca, S transformation in phosphogypsum decomposition with Fe catalyst, Ind. Eng. Chem. Res. 53(2014) 7648-7654. [30] L. Ma, X. Niu, J. Hou, S. Zheng, W. Xu, Reaction mechanism and influence factors analysis for calcium sulfide generation in the process of phosphogypsum decomposition, Thermochim. Acta 526(2011) 163-168. [31] X. Yan, L. Ma, B. Zhu, D. Zheng, Y. Lian, Reaction mechanism process analysis with phosphogypsum decomposition in multiatmosphere control, Ind. Eng. Chem. Res. 53(2014) 19453-19459. [32] J. Yang, L. Ma, J. Tang, B. Zhu, Y. Lian, H. Liu, G. Ma, Research development of chemical-looping combustion, Mod. Chem. Ind. (36) (2016) 25-30. [33] S. Zheng, P. Ning, L. Ma, X. Niu, W. Zhang, Y. Chen, Reductive decomposition of phosphogypsum with high-sulfur-concentration coal to SO2 in an inert atmosphere, Chem. Eng. Res. Des. 89(2011) 2736-2741. [34] B. Zhu, L. Ma, D. Zheng, G. Ma, Y. Lian, J. Yang, Study on the transmission and transformation of the impurities in the reductive decomposition process of phosphogypsum, 6th International Conference on Machinery, Materials, Environment, Biotechnology and Computer 2016, Xi'an, China, 2016. [35] X. Li, Y. Zhang, X. Shen, Q. Wang, Z. Pan, Kinetics of calcium sulfoaluminate formation from tricalcium aluminate, calcium sulfate and calcium oxide, Cem. Concr. Res. 55(2014) 79-87. |