[1] Y. Jin, J. Kim, B. Guillaume, Review of critical material studies, Resour. Conserv. Recycl. 113(2016) 77-87. [2] T.E. Graedel, R. Barr, C. Chandler, T. Chase, J. Choi, L. Christoffersen, E. Friedlander, C. Henly, C. Jun, N.T. Nassar, et al., Methodology of metal criticality determination, Environ. Sci. Technol. 46(2012) 1063-1070. [3] E.U. Commission, et al., Report on Critical Raw Materials for the EU, Retrieved April. 30(2014) 2015. [4] L. Erdmann, T.E. Graedel, Criticality of non-fuel minerals:A review of major approaches and analyses, Environ. Sci. Technol. 45(2011) 7620-7630. [5] R. Hoogmartens, J. Eyckmans, S. Van Passel, Landfill taxes and enhanced waste management:Combining valuable practices with respect to future waste streams, Waste Manag. 55(2016) 345-354. [6] E. Restrepo, A.N. Løvik, P. Wäger, R. Widmer, R. Lonka, D.B. Müller, Stocks, flows, and distribution of critical metals in embedded electronics in passenger vehicles, Environ. Sci. Technol. 51(2017) 1129-1139. [7] E. Schwegler, Crosscutting research in the Critical Materials Institute, Meet. Abstr 2017, p. 1675. [8] S.A. Northey, G.M. Mudd, T.T. Werner, Unresolved complexity in assessments of mineral resource depletion and availability, Nat. Resour. Res. (2017) 1-15. [9] T.E. Graedel, E.M. Harper, N.T. Nassar, B.K. Reck, On the materials basis of modern society, Proc. Natl. Acad. Sci. 112(2015) 6295-6300. [10] M. Frenzel, J. Kullik, M.A. Reuter, J. Gutzmer, Raw material ‘criticality’-Sense or nonsense? J. Phys. D. Appl. Phys. 50(2017) 123002. [11] EU Commission, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, Appl. Counc. Regul. COM (2017), 2017. [12] C.M. Lwin, M. Murakami, S. Hashimoto, The implications of allocation scenarios for global phosphorus flow from agriculture and wastewater, Resour. Conserv. Recycl. 122(2017) 94-105. [13] R. Koppelaar, H.P. Weikard, Assessing phosphate rock depletion and phosphorus recycling options, Glob. Environ. Chang. 23(2013) 1454-1466. [14] K.C. van Dijk, J.P. Lesschen, O. Oenema, Phosphorus flows and balances of the European Union Member States, Sci. Total Environ. 542(2016) 1078-1093. [15] F.-W. Wellmer, R.W. Scholz, Peak minerals:What can we learn from the history of mineral economics and the cases of gold and phosphorus? Miner. Econ. 30(2017) 73-93. [16] D. Cordell, S. White, Sustainable phosphorus measures:Strategies and technologies for achieving phosphorus security, Agronomy 3(2013) 86-116. [17] M. Mew, Future Phosphate Rock Production-Peak or Plateau, Fertecon Res. Cent. Limited, 2011 Available Online http://www.Fertecon-Frc.Info/Page15.htm, Accessed date:10 March 2011. [18] R.W. Scholz, A.E. Ulrich, M. Eilittä, A. Roy, Sustainable use of phosphorus:A finite resource, Sci. Total Environ. 461(2013) 799-803. [19] G. Calvo, A. Valero, A. Valero, Assessing maximum production peak and resource availability of non-fuel mineral resources:Analyzing the influence of extractable global resources, Resour. Conserv. Recycl. 125(2017) 208-217. [20] M. de Ridder, S. De Jong, J. Polchar, S. Lingemann, Risks and Opportunities in the Global Phosphate Rock Market:Robust Strategies in Times of Uncertainty, Hague Centre for Strategic Studies, 2012. [21] J.A. Ober, Mineral Commodity Summaries 2017, 2017. [22] O.F. Schoumans, F. Bouraoui, C. Kabbe, O. Oenema, K.C. van Dijk, Phosphorus management in Europe in a changing world, Ambio 44(2015) 180-192. [23] R.W. Scholz, F.W. Wellmer, Approaching a dynamic view on the availability of mineral resources:What we may learn from the case of phosphorus? Glob. Environ. Chang. (2013), https://doi.org/10.1016/j.gloenvcha.2012.10.013. [24] P.J.A. Withers, K.C. van Dijk, T.-S.S. Neset, T. Nesme, O. Oenema, G.H. Rubæk, O.F. Schoumans, B. Smit, S. Pellerin, Stewardship to tackle global phosphorus inefficiency:The case of Europe, Ambio 44(2015) 193-206. [25] C. Fischer, B. Kjaer, Recycling and Sustainable Materials Management, Copenhagen Resour. Inst, 2012. [26] E. Commission, Europe 2020:A Strategy for Smart, Sustainable and Inclusive Growth:Communication from the Commission, Publications Office of the European Union, 2010. [27] J. Trochu, A. Chaabane, M. Ouhimmou, Reverse logistics network redesign under uncertainty for wood waste in the CRD industry, Resour. Conserv. Recycl. 128(2018) 32-47. [28] J. Busch, J.K. Steinberger, D.A. Dawson, P. Purnell, K. Roelich, Managing critical materials with a technology-specific stocks and flows model, Environ. Sci. Technol. 48(2014) 1298-1305. [29] E.D. Roy, Phosphorus recovery and recycling with ecological engineering:A review, Ecol. Eng 98(2017) 213-227. [30] D.L. Childers, J. Corman, M. Edwards, J.J. Elser, Sustainability challenges of phosphorus and food:Solutions from closing the human phosphorus cycle, Bioscience 61(2011) 117-124. [31] D. Cordell, J.-O. Drangert, S. White, The story of phosphorus:Global food security and food for thought, Glob. Environ. Chang. 19(2009) 292-305. [32] J. Mateo-Sagasta, L. Raschid-Sally, A. Thebo, Global wastewater and sludge production, treatment and use, Wastewater, Springer 2015, pp. 15-38. [33] Y. Kalmykova, R. Harder, H. Borgestedt, I. Svanäng, Pathways and management of phosphorus in urban areas, J. Ind. Ecol. 16(2012) 928-939. [34] J. Cooper, C. Carliell-Marquet, A substance flow analysis of phosphorus in the UK food production and consumption system, Resour. Conserv. Recycl. 74(2013) 82-100. [35] Y. Kalmykova, K.K. Fedje, Phosphorus recovery from municipal solid waste incineration fly ash, Waste Manag. 33(2013) 1403-1410. [36] R.B. Chowdhury, G.A. Moore, A.J. Weatherley, M. Arora, Key sustainability challenges for the global phosphorus resource, their implications for global food security, and options for mitigation, J. Clean. Prod. 140(2017) 945-963. [37] T.F.H. Theobald, M. Schipper, J. Kern, Phosphorus flows in Berlin-Brandenburg, a regional flow analysis, Resour. Conserv. Recycl. 112(2016) 1-14. [38] B. Li, I. Boiarkina, B. Young, W. Yu, Substance flow analysis of phosphorus within New Zealand and comparison with other countries, Sci. Total Environ. 527(2015) 483-492. [39] M. Klinglmair, C. Lemming, L.S. Jensen, H. Rechberger, T.F. Astrup, C. Scheutz, Phosphorus in Denmark:National and regional anthropogenic flows, Resour. Conserv. Recycl. 105(2015) 311-324. [40] Y. Liu, G. Villalba, R.U. Ayres, H. Schroder, Global phosphorus flows and environmental impacts from a consumption perspective, J. Ind. Ecol. 12(2008) 229-247. [41] D.P. Van Vuuren, A.F. Bouwman, A.H.W. Beusen, Phosphorus demand for the 1970-2100 period:A scenario analysis of resource depletion, Glob. Environ. Chang. 20(2010) 428-439. [42] M. Chen, T.E. Graedel, A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts, Glob. Environ. Chang. 36(2016) 139-152. [43] R.W. Scholz, F.W. Wellmer, Losses and use efficiencies along the phosphorus cycle. Part 1:Dilemmata and losses in the mines and other nodes of the supply chain, Resour. Conserv. Recycl. 105(2015) 259-274. [44] C. Ott, H. Rechberger, The European phosphorus balance, Resour. Conserv. Recycl. 60(2012) 159-172. [45] M. Garcia-Holguera, O.G. Clark, A. Sprecher, S. Gaskin, Ecosystem biomimetics for resource use optimization in buildings, Build. Res. Inf. 44(2016) 263-278. [46] N. Kollikkathara, H. Feng, D. Yu, A system dynamic modeling approach for evaluating municipal solid waste generation, landfill capacity and related cost management issues, Waste Manag. 30(2010) 2194-2203. [47] A.-K. Modin-Edman, I. Öborn, H. Sverdrup, FARMFLOW-A dynamic model for phosphorus mass flow, simulating conventional and organic management of a Swedish dairy farm, Agric. Syst. 94(2007) 431-444. [48] S. Goddek, C.A. Espinal, B. Delaide, M.H. Jijakli, Z. Schmautz, S. Wuertz, K.J. Keesman, Navigating towards decoupled aquaponic systems:A system dynamics design approach, Water 8(2016) 303. [49] J.L. Treadwell, O.G. Clark, E.M. Bennett, Dynamic simulation of phosphorus flows through Montreal's food and waste systems, Resour. Conserv. Recycl. 131(2018) 122-133. [50] S.C. Brailsford, N.A. Hilton, A Comparison of Discrete Event Simulation and System Dynamics for Modelling Health Care Systems, 2001. [51] S.R. Golroudbary, S.M. Zahraee, System dynamics model for optimizing the recycling and collection of waste material in a closed-loop supply chain, Simul. Model. Pract. Theory 53(2015) 88-102. [52] A. Sweetser, A comparison of system dynamics (SD) and discrete event simulation (DES), 17th Int. Conf. Syst. Dyn. Soc 1999, pp. 20-23. [53] B. Cieślik, P. Konieczka, A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of "no solid waste generation" and analytical methods, J. Clean. Prod. 142(2017) 1728-1740. [54] B.K. Mayer, L.A. Baker, T.H. Boyer, P. Drechsel, M. Gifford, M.A. Hanjra, P. Parameswaran, J. Stoltzfus, P. Westerhoff, B.E. Rittmann, Total value of phosphorus recovery, Environ. Sci. Technol. 50(2016) 6606-6620. [55] J.W. Forrester, Industrial dynamics, J. Oper. Res. Soc. 48(1997) 1037-1041. [56] J. Sterman, R. Oliva, K. Linderman, E. Bendoly, System dynamics perspectives and modeling opportunities for research in operations management, J. Oper. Manag. (2015) 1-5. [57] J.P. Torres, M. Kunc, F. O'Brien, Supporting strategy using system dynamics, Eur. J. Oper. Res. 260(2017) 1081-1094. [58] G.S. Metson, G.K. MacDonald, D. Haberman, T. Nesme, E.M. Bennett, Feeding the corn belt:Opportunities for phosphorus recycling in US agriculture, Sci. Total Environ. 542(2016) 1117-1126. [59] N. Gilbert, Environment:The disappearing nutrient, Nat. News 461(2009) 716-718. [60] Y. Sun, Q. Zhang, Y. Han, P. Gao, G. Li, Comprehensive utilization of iron and phosphorus from high-phosphorus refractory iron ore, JOM 70(2018) 144-149. [61] R.W. Scholz, D.T. Hellums, A.A. Roy, Global sustainable phosphorus management:A transdisciplinary venture, Curr. Sci. 108(2015) 1237-1246. [62] S. Belboom, C. Szöcs, A. Léonard, Environmental impacts of phosphoric acid production using di-hemihydrate process:A Belgian case study, J. Clean. Prod. 108(2015) 978-986. [63] G. Van Hoof, M. Fan, A. Lievens, Use of product and ingredient tools to assess the environmental profile of automatic dishwashing detergents, J. Clean. Prod. 142(2017) 3536-3543. [64] R. Palmeira-de-Oliveira, A. Palmeira-de-Oliveira, C. Gaspar, S. Silvestre, J. Martinez-de-Oliveira, M.H. Amaral, L. Breitenfeld, Sodium tripolyphosphate:An excipient with intrinsic in vitro anti-Candida activity, Int. J. Pharm. 421(2011) 130-134. [65] E. Ritz, K. Hahn, M. Ketteler, M.K. Kuhlmann, J. Mann, Phosphate additives in food-A health risk, Dtsch Arztebl Int 109(2012) 49. [66] A. Makara, M. Smol, J. Kulczycka, Z. Kowalski, Technological, environmental and economic assessment of sodium tripolyphosphate production-A case study, J. Clean. Prod. 133(2016) 243-251. [67] EU Commission, Report from the Commission to the European Parliament and the Council, Appl. Counc. Regul. 21572010, p. 2001. [68] D. Cordell, A. Rosemarin, J.J. Schröder, A.L. Smit, Towards global phosphorus security:A systems framework for phosphorus recovery and reuse options, Chemosphere 84(2011) 747-758. [69] E. Ortiz-Reyes, R.P. Anex, A life cycle impact assessment method for freshwater eutrophication due to the transport of phosphorus from agricultural production, J. Clean. Prod. 177(2018) 474-482. [70] O.F. Schoumans, W.J. Chardon, M.E. Bechmann, C. Gascuel-Odoux, G. Hofman, B. Kronvang, G.H. Rubæk, B. Ulén, J.-M. Dorioz, Mitigation options to reduce phosphorus losses from the agricultural sector and improve surface water quality:A review, Sci. Total Environ. 468(2014) 1255-1266. [71] I. Noya, S. González-García, J. Bacenetti, M. Fiala, M.T. Moreira, Environmental impacts of the cultivation-phase associated with agricultural crops for feed production, J. Clean. Prod 172(2018) 3721-3733. [72] A. Mottet, C. Haan, A. Falcucci, G. Tempio, C. Opio, P. Gerber, Livestock:On our plates or eating at our table? A new analysis of the feed/food debate, Glob. Food Sec. 14(2017) 1-8. [73] N. Yokokawa, E. Kikuchi-Uehara, H. Sugiyama, M. Hirao, Framework for analyzing the effects of packaging on food loss reduction by considering consumer behavior, J. Clean. Prod. 174(2018) 26-34. [74] A. Stenmarck, C. Jensen, T. Quested, G. Moates, M. Buksti, B. Cseh, S. Juul, A. Parry, A. Politano, B. Redlingshofer, et al., Estimates of European Food Waste Levels, IVL Swedish Environmental Research Institute, 2016. [75] EU Commission, Closing the loop-An EU action plan for the Circular Economy, Commun. from Comm. to Eur. Parliam. Counc. Eur. Econ. Soc. Comm. Comm. Reg. COM. 6142015, p. 2015. [76] H. Kroiss, H. Rechberger, L. Egle, Phosphorus in water quality and waste management, Integr. Waste Manag. Ⅱ, InTech, 2011. [77] A. Cesaro, V. Belgiorno, M. Guida, Compost from organic solid waste:Quality assessment and European regulations for its sustainable use, Resour. Conserv. Recycl. 94(2015) 72-79. [78] L. Loyon, Overview of manure treatment in France, Waste Manag. 61(2017) 516-520. [79] H. Blöch, European Union legislation on wastewater treatment and nutrients removal, Proc. IWA Spec. Conf. "Nutrient Manag. Wastewater Treat. Recycl. Streams", Lemtech Konsult, Krakow, Pol, 2005. [80] S. Hukari, L. Hermann, A. Nättorp, From wastewater to fertilisers-Technical overview and critical review of European legislation governing phosphorus recycling, Sci. Total Environ. 542(2016) 1127-1135. [81] Y. Barlas, Formal aspects of model validity and validation in system dynamics, Syst. Dyn. Rev. 12(1996) 183-210. [82] H. Wu, Y. Zhang, Z. Yuan, L. Gao, Phosphorus flow management of cropping system in Huainan, China, 1990-2012, J. Clean. Prod. 112(2016) 39-48. [83] A. Leon, K. Kohyama, Estimating nitrogen and phosphorus losses from lowland paddy rice fields during cropping seasons and its application for life cycle assessment, J. Clean. Prod. 164(2017) 963-979. [84] B.J. Pearce, M. Chertow, Scenarios for achieving absolute reductions in phosphorus consumption in Singapore, J. Clean. Prod. 140(2017) 1587-1601. [85] J. Álvarez, M. Roca, C. Valderrama, J.L. Cortina, A phosphorous flow analysis in Spain, Sci. Total Environ. 612(2018) 995-1006. [86] L. Egle, H. Rechberger, J. Krampe, M. Zessner, Phosphorus recovery from municipal wastewater:An integrated comparative technological, environmental and economic assessment of P recovery technologies, Sci. Total Environ. 571(2016) 522-542. [87] J. Zhao, D. Wang, X. Li, Q. Yang, H. Chen, Y. Zhong, H. An, G. Zeng, An efficient process for wastewater treatment to mitigate free nitrous acid generation and its inhibition on biological phosphorus removal, Sci. Rep. 5(2015) 8602. [88] L. Shu, P. Schneider, V. Jegatheesan, J. Johnson, An economic evaluation of phosphorus recovery as struvite from digester supernatant, Bioresour. Technol. 97(2006) 2211-2216. [89] K. Suzuki, Y. Tanaka, K. Kuroda, D. Hanajima, Y. Fukumoto, T. Yasuda, M. Waki, Removal and recovery of phosphorous from swine wastewater by demonstration crystallization reactor and struvite accumulation device, Bioresour. Technol. 98(2007) 1573-1578. [90] P.S. Caddarao, S. Garcia-Segura, F.C. Ballesteros Jr., Y.-H. Huang, M.-C. Lu, Phosphorous recovery by means of fluidized bed homogeneous crystallization of calcium phosphate. Influence of operational variables and electrolytes on brushite homogeneous crystallization, J. Taiwan Inst. Chem. Eng. 83(2018) 124-132. [91] H. Zou, Y. Wang, Phosphorus removal and recovery from domestic wastewater in a novel process of enhanced biological phosphorus removal coupled with crystallization, Bioresour. Technol. 211(2016) 87-92. [92] D. Cordell, The Story of Phosphorus:Sustainability Implications of Global Phosphorus Scarcity for Food Security, PhD Thesis, Linkoping University, Sweden, 2010. [93] O.F. Schoumans, W.H. Rulkens, O. Oenema, P.A.I. Ehlert, Phosphorus Recovery from Animal Manure:Technical Opportunities and Agro-economical Perspectives, 2010. [94] J.J. Schroder, D. Cordell, A.L. Smit, A. Rosemarin, Sustainable use of phosphorus:EU tender ENV, Wageningen University & Research, B1/ETU/2009/0025, 2010. [95] A.L. Mourad, E.E.C. Garcia, G.B. Vilela, F. Von Zuben, Influence of recycling rate increase of aseptic carton for long-life milk on GWP reduction, Resour. Conserv. Recycl. 52(2008) 678-689. [96] A. Giannis, M. Chen, K. Yin, H. Tong, A. Veksha, Application of system dynamics modeling for evaluation of different recycling scenarios in Singapore, J. Mater. Cycles Waste Manage. 19(2017) 1177-1185. [97] C. Kabbe, C. Remy, F. Kraus, Review of Promising Methods for Phosphorus Recovery & Recycling from Wastewater, International Fertiliser Soc, 2015. [98] C. Kabbe, F. Kraus, P recovery:From evolution to revolution, Fertil. Int. 479(2017) 37-41. [99] R.W. Scholz, F.-W. Wellmer, Although there is no physical short-term scarcity of phosphorus, its resource efficiency should be improved, J. Ind. Ecol, Wiley Online, 2018, https://doi.org/10.1111/jiec.12750. [100] P. Guedes, N. Couto, L.M. Ottosen, A.B. Ribeiro, Phosphorus recovery from sewage sludge ash through an electrodialytic process, Waste Manag. 34(2014) 886-892. [101] T. Schütte, C. Niewersch, T. Wintgens, S. Yüce, Phosphorus recovery from sewage sludge by nanofiltration in diafiltration mode, J. Membr. Sci. 480(2015) 74-82. [102] USGS, USGS Minerals Yearbook, Phosphate Rock, USGS. 2015 USGS Miner. Yearb. Phosphate Rock. Available https://Minerals.Usgs.Gov/Minerals/Pubs/Commodity/Phosphate_rock/Myb1-2015-Phosp.pdf. |