[1] Z.M. Xia, X.S. Li, Z.Y. Chen, G. Li, K.F. Yan, C.G. Xu, Q.N. Lv, J. Cai, Hydrate-based CO2 capture and CH4 purification from simulated biogas with synergic additives based on gas solvent, Appl. Energy 162(2016) 1153-1159. [2] J. Gholinezhad, A. Chapoy, B. Tohidi, Separation and capture of carbon dioxide from CO2/H2 syngas mixture using semi-clathrate hydrates, Chem. Eng. Res. Des. 89(2011) 1747-1751. [3] A. Valdes, G.J. Kroes, Translation-rotation energy levels of one H-2 molecule inside the small, medium and large cages of the structure H clathrate hydrate, Phys. Chem. Chem. Phys. 13(2011) 2935-2944. [4] X. S.L., Q. N. L., Z. Y. C., Evaluation of seawater desalination based on hydrate formation in a novel apparatus, Proceedings of the 9th International Conference on Gas Hydrates (ICGH9-2017) Denver, Colorado, USA, June 25-30, 20172017, p. 1857. [5] Y. Zhao, J. Zhao, W. Liang, Q. Gao, D. Yang, Semi-clathrate hydrate process of methane in porous media-microporous materials of 5A-type zeolites, Fuel 220(2018) 185-191. [6] J. Zheng, P. Zhang, P. Linga, Semiclathrate hydrate process for pre-combustion capture of CO2 at near ambient temperatures, Appl. Energy 194(2017) 267-278. [7] J. Zhao, Y. Zhao, W. Liang, S. Song, Q. Gao, Semi-clathrate hydrate process of methane in porous media-mesoporous materials of SBA-15, Fuel 220(2018) 446-452. [8] P. Linga, M.A. Clarke, A review of reactor designs and materials employed for increasing the rate of gas hydrate formation, Energy Fuel 31(2017) 1-13. [9] Z. Wu, Y. Li, X. Sun, M. Li, R. Jia, Experimental study on the gas phase permeability of montmorillonite sediments in the presence of hydrates, Mar. Pet. Geol. 91(2018) 373-380. [10] Q. Zhang, Q. Wu, H. Zhang, B.Y. Zhang, T. Xia, Effect of montmorillonite on hydratebased methane separation from mine gas, J. Cent. South Univ. 25(2018) 38-50. [11] N. Choudhary, V.R. Hande, S. Roy, S. Chakrabarty, R. Kumar, Effect of sodium dodecyl sulfate surfactant on methane hydrate formation:A molecular dynamics study, J. Phys. Chem. B 122(2018) 6536-6542. [12] Z. Sun, H. Wang, J. Yao, Z. Sun, K. Bongole, X. Zhu, L. Liu, J. Wang, Effect of cagespecific occupancy on the dissociation rate of a three-phase coexistence methane hydrate system:A molecular dynamics simulation study, J. Nat. Gas Sci. Eng. 55(2018) 235-242. [13] D. Yuhara, P.E. Brumby, D.T. Wu, A.K. Sum, K. Yasuoka1, Analysis of three-phase equilibrium conditions for methane hydrate by isometric-isothermal molecular dynamics simulations, J. Chem. Phys. 148(2018) 184501. [14] D.S. Bai, G.J. Chen, X.R. Zhang, W.C. Wang, Microsecond molecular dynamics simulations of the kinetic pathways of gas hydrate formation from solid surfaces, Langmuir 27(2011) 5961-5967. [15] S. Liang, D. Rozmanov, P.G. Kusalik, Crystal growth simulations of methane hydrates in the presence of silica surfaces, Phys. Chem. Chem. Phys. 13(2011) 19856-19864. [16] P. Guo, Y.K. Pan, L.L. Li, B. Tang, Molecular dynamics simulation of decomposition and thermal conductivity of methane hydrate in porous media, Chin. Phys. B 26(2017) 073101. [17] S.H. Park, G. Sposito, Do montmorillonite surfaces promote methane hydrate formation? Monte Carlo and molecular dynamics simulations, J. Phys. Chem. B 107(2003) 2281-2290. [18] R.T. Cygan, S. Guggenheim, A.F.K. van Groos, Molecular models for the intercalation of methane hydrate complexes in montmorillonite clay, J. Phys. Chem. B 108(2004) 15141-15149. [19] K.F. Yan, X.S. Li, Z.Y. Chen, C.G. Xu, Y. Zhang, Z.M. Xia, The formation of CH4 hydrate in the slit nanopore between the smectite basal surfaces by molecular dynamics simulation, Energy Fuel 32(2018) 6467-6474. [20] Y. Zhang, X.S. Li, Y. Wang, Z.Y. Chen, G. Li, Methane hydrate formation in marine sediment from South China Sea with different water saturations, Energies 10(2017) 561. [21] Y. Zhang, X.S. Li, Z.Y. Chen, J. Cai, C.G. Xu, G. Li, Formation behaviors of CO2 hydrate in kaoline and bentonite clays with partially water saturated, Energy Procedia 143(2017) 547-552. [22] K.F. Yan, X.S. Li, Z.Y. Chen, Z.M. Xia, C.G. Xu, Z. Zhang, Molecular dynamics simulation of the crystal nucleation and growth behavior of methane hydrate in the presence of the surface and nanopores of porous sediment, Langmuir 32(2016) 7975-7984. [23] J.O. Titiloye, N.T. Skipper, Molecular dynamics simulation of methane in sodium montmorillonite clay hydrates at elevated pressures and temperatures, Mol. Phys. 99(2001) 899-906. [24] X. Liu, X. Lu, E.J. Meijer, R. Wang, H. Zhou, Atomic-scale structures of interfaces between phyllosilicate edges and water, Geochim. Cosmochim. Acta 81(2012) 56-68. [25] I.T. Todorov, W. Smith, K. Trachenko, M.T. Dove, DL_POLY_3:New dimensions in molecular dynamics simulations via massive parallelism, J. Mater. Chem. 16(2006) 1911-1918. [26] R.T. Cygan, J.J. Liang, A.G. Kalinichev, Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field, J. Phys. Chem. B 108(2004) 1255-1266. [27] W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc. 118(1996) 11225-11236. [28] J.L.F. Abascal, E. Sanz, R.G. Fernandez, C. Vega, A potential model for the study of ices and amorphous water:TIP4P/Ice, J. Chem. Phys. 122(2005) 234511. [29] M. Zi, D. Chen, H. Ji, G. Wu, Effects of asphaltenes on the formation and decomposition of methane hydrate:A molecular dynamics study, Energy Fuel 30(2016) 5643-5650. [30] Z.C. Zhang, G.J. Guo, The effects of ice on methane hydrate nucleation:A microcanonical molecular dynamics study, Phys. Chem. Chem. Phys. 19(2017) 19496-19505. [31] J.H. Lee, S. Guggenheim, Single-crystal X-ray refinement of pyrophyllite-1tc, Am. Mineral. 66(1981) 350-357. [32] Y.J. Seo, J. Seol, S.H. Yeon, D.Y. Koh, M.J. Cha, S.P. Kang, Y.T. Seo, J.J. Bahk, J. Lee, H. Lee, Structural, mineralogical, and rheological properties of methane hydrates in smectite clays, J. Chem. Eng. Data 54(2009) 1284-1291. [33] E.S. Boek, P.V. Coveney, N.T. Skipper, Molecular modeling of clay hydration:A study of hysteresis loops in the swelling curves of sodium montmorillonites, Langmuir 11(1995) 4629-4631. [34] Y. Zhang, X.S. Li, Y. Wang, Z.Y. Chen, K.F. Yan, Decomposition conditions of methane hydrate in marine sediments from South China Sea, Fluid Phase Equilib. 413(2016) 110-115. [35] P.M. Rodger, T.R. Forester, W. Smith, Simulations of the methane hydrate methane gas interface near hydrate forming conditions, Fluid Phase Equilib. 116(1996) 326-332. [36] C. Moon, R.W. Hawtin, P.M. Rodger, Nucleation and control of clathrate hydrates:Insights from simulation, Faraday Discuss. 136(2007) 367-382. [37] A.A. Chialvo, M. Houssa, P.T. Cummings, Molecular dynamics study of the structure and thermophysical properties of model sI clathrate hydrates, J. Phys. Chem. B 106(2002) 442-451. [38] C.Y. Geng, H. Wen, H. Zhou, Molecular simulation of the potential of methane reoccupation during the replacement of methane hydrate by CO2, J. Phys. Chem. A 113(2009) 5463-5469. [39] N.J. English, J.K. Johnson, C.E. Taylor, Molecular-dynamics simulations of methane hydrate dissociation, J. Chem. Phys. 123(2005) 244503-244515. [40] C.A. Koh, R.P. Wisbey, X.P. Wu, R.E. Westacott, A.K. Soper, Water ordering around methane during hydrate formation, J. Chem. Phys. 113(2000) 6390-6397. |