[1] A.R. Smith, J. Klosek, A review of air separation technologies and their integration with energy conversion processes, Fuel Process. Technol. 70(2) (2001) 115-134. [2] X.B. Zhang, J.K. Zhu, Z. Wu, W. Xiong, X.J. Zhang, L.M. Qiu, Performance prediction of structured packing column for cryogenic air separation with hybrid model, Chin. J. Chem. Eng. 22(8) (2014) 930-936. [3] R.W. Baker, K. Lokhandwala, Natural gas processing with membranes:An overview, Ind. Eng. Chem. Res. 47(7) (2008) 2109-2121. [4] L.V. Van der Ham, S. Kjelstrup, Exergy analysis of two cryogenic air separation processes, Energy 35(13) (2010) 4731-4739. [5] M. Nakaiwa, T. Akiya, M. Owa, Y. Tanaka, Evaluation of an energy supply system with air separation, Energy Convers. Manag. 37(3) (1996) 295-301. [6] B. Seliger, R. Hanke-Rauschenbach, F. Hannemann, K. Sundmacher, Modeling and dynamics of an air separation rectification column as part of an IGCC power plant, Sep. Purif. Technol. 49(2) (2006) 136-148. [7] J. Miller, W.L. Luyben, P. Belanger, S. Blouin, L. Megan, Improving agility of cryogenic air separation plants, Ind. Eng. Chem. Res. 47(2) (2008) 394-404. [8] L.Y. Zhu, Z.Q. Chen, X. Chen, Z.J. Shao, J.X. Qian, Simulation and optimization of cryogenic air separation units using a homotopy-based back tracking method, Sep. Purif. Technol. 67(3) (2009) 262-270. [9] B. Roffel, B.H.L. Betlem, J.A.F.D. Ruijter, First principles dynamic modeling and multivariable control of a cryogenic distillation process, Comput. Chem. Eng. 24(1) (2000) 111-123. [10] S. Bian, S. Khowinij, M.A. Henson, P. Belanger, L. Megan, Compartmental modeling of high purity air separation columns, Comput. Chem. Eng. 29(10) (2005) 2096-2109. [11] Y. Kansha, A. Kishimoto, T. Nakagawa, A. Tsutsumi, A novel cryogenic air separation process based on self-heat recuperation, Sep. Purif. Technol. 77(3) (2011) 389-396. [12] L. Chang, X.G. Liu, L.K. Dai, Y.X. Sun, Modeling, characteristic analysis, and optimization of ideal internal thermally coupled air separation columns, Ind. Eng. Chem. Res. 51(44) (2012) 14517-14524. [13] H. Zhou, Y.A. Cai, Y. Xiao, B. You, J. Shi, J. Li, B.H. Chen, Process configurations and simulations for a novel single-column cryogenic air separation process, Ind. Eng. Chem. Res. 51(47) (2012) 15431-15439. [14] L. Xia, Y.L. Feng, X.Y. Sun, S.G. Xiang, A novel method based on entransy theory for setting energy targets of heat exchanger network, Chin. J. Chem. Eng. 25(8) (2017) 1037-1042. [15] B. Linnhoff, User Guide on Process Integration for the Efficient Use of Energy, Pergamon Press Ltd, Oxford, UK, 1982. [16] T. Gundersen, L. Naess, The synthesis of cost optimal heat exchanger networks, an industrial review of the state of the art, Comput. Chem. Eng. 12(6) (1988) 503-530. [17] B. Linnhoff, J.R. Flower, Synthesis of heat exchanger networks:I. Systematic generation of energy optimal networks, AIChE J. 24(4) (1978) 633-654. [18] B. Linnhoff, Pinch analysis-A state of the art overview, Chem. Eng. Res. Des. 71(1993) 503-522. [19] B. Linnhoff, E. Hindmarsh, The pinch design method for heat exchanger networks, Chem. Eng. Sci. 38(5) (1983) 745-763. [20] R. Smith, Chemical Process Design and Integration, John Wiley & Sons, USA, 2005. [21] L.X. Kang, Y.Z. Liu, A systematic strategy for multi-period heat exchanger network retrofit under multiple practical restrictions, Chin. J. Chem. Eng. 25(8) (2017) 1043-1051. [22] L.X. Kang, Y.Z. Liu, Minimizing investment cost for multi-period heat exchanger network retrofit by matching heat transfer areas with different strategies, Chin. J. Chem. Eng. 23(7) (2015) 1053-1160. [23] M.Z. Lu, Investigation of the constraint relationship of the temperature of the expanded air with its parameters, Cryog. Technol. 4(1974) 11-19. |