[1] T. Liu, Y. Zhang, Y. Xu, H. Lin, X. Xu, Y. Luo, et al., The effects of dust-haze on mortality are modified by seasons and individual characteristics in Guangzhou, China, Environ. Pollut. 187(2014) 116-123. [2] Q. Zhang, J. Quan, X. Tie, X. Li, Q. Liu, Y. Gao, D. Zhao, Effects of meteorology and secondary particle formation on visibility during heavy haze events in Beijing, China, Sci. Total Environ. 502(2015) 578-584. [3] M. Gao, S.K. Guttikunda, G.R. Carmichael, Y. Wang, Z. Liu, C. Stanier, et al., Health impacts and economic losses assessment of the 2013 severe haze event in Beijing area, Sci. Total Environ. 511(2015) 553-561. [4] J. Gao, A. Woodward, S. Vardoulakis, et al., Haze, public health and mitigation measures in China:A review of the current evidence for further policy response, Sci. Total Environ. 578(2017) 148-157. [5] G. Huang, PM2.5 opened a door to public participation addressing environmental challenges in China, Environ. Pollut. 197(2015) 313-315. [6] China's Ministry of Environmental Protection, 2017 China Ecological Environment Situation Report http://www.mep.gov.cn/hjzl/, 2018. [7] China's Ministry of Environmental Protection, National Ambient Air Quality Standards (GB3095-2012) http://www.mep.gov.cn, 2013. [8] China's State Council, Action plan on prevention and control of air pollution http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm, 2013. [9] China's Ministry of Environmental Protection, Clean air research plan http://www.mep.gov.cn/xxgk/hjyw/201309/t20130930_261118.shtml, 2013. [10] National Bureau of Statistics of China, 2015 China Statistical Yearbook, China Statistics Press, Beijing (China), 2016(in Chinese). [11] M. Li, L. Zhang, Haze in China:Current and future challenges, Environ. Pollut. 189(2014) 85-86. [12] China's Ministry of Environmental Protection, Nankai University, Chinese Research Academy of Environmental Sciences, et al., Guidance for Particulate Matter Source Apportionment, 2013(in Chinese). [13] M. Zheng, Y. Zhang, C. Yan, X. Zhu, J.J. Schauer, Y. Zhang, Review of PM2.5 source apportionment methods in China, Acta Sci. Nat. Univ. Pekin. 50(2014) 1141-1154(in Chinese). [14] C.Y. Zhang, S.X. Wang, Y. Zhao, et al., Current status and future prospects of anthropogenic particulate matter emissions in China, J. Environ. Sci. 30(2009) 1881-1887(in Chinese). [15] G.L. Cao, X.Y. Zhang, S.L. Gong, et al., Emission inventories of primary particles and pollutant gases for China, Chin. Sci. Bull. 56(2011) 261-268(in Chinese). [16] Y. Zhang, J. Cai, S. Wang, K. He, M. Zheng, Review of receptor-based source apportionment research of fine particulate matter and its challenges in China, Sci. Total Environ. 586(2017) 917-929. [17] Y. Zhang, M. Zheng, J. Cai, C. Yan, Y. Hu, A.G. Russell, et al., Comparison and overview of PM2.5 source apportionment methods, Chin. Sci. Bull. 60(2015) 109-121(in Chinese). [18] C.S. Liang, F.K. Duan, K.B. He, Y.L. Ma, Review on recent progress in observations, source identifications and countermeasures of PM2.5, Environ. Int. 86(2016) 150-170. [19] S. Balachandran, J.E. Pachon, Y.T. Hu, D. Lee, J.A. Mulholland, A.G. Russell, Ensemble-trained source apportionment of fine particulate matter and method uncertainty analysis, Atmos. Environ. 61(2012) 387-394. [20] S. Balachandran, H.H. Chang, J.E. Pachon, H.A. Holmes, J.A. Mulholland, A.G. Russell, Bayesian-based ensemble source apportionment of PM2.5, Environ. Sci. Technol. 47(2013) 13511-13518. [21] M.C. Bove, P. Brotto, F. Cassola, E. Cuccia, D. Massabo, A. Mazzino, et al., An integrated PM2.5 source apportionment study:Positive matrix factorisation vs. the chemical transport model CAMx, Atmos. Environ. 94(2014) 274-286. [22] Y. Hu, S. Balachandran, J.E. Pachon, J. Baek, C. Ivey, H. Holmes, et al., Fine particulate matter source apportionment using a hybrid chemical transport and receptor model approach, Atmos. Chem. Phys. 14(2014) 5415-5431. [23] M.L. Maier, S. Balachandran, S.E. Sarnat, J.R. Turner, J.A. Mulholland, A.G. Russell, Application of an ensemble-trained source apportionment approach at a site impacted by multiple point sources, Environ. Sci. Technol. 47(2013) 3743-3751. [24] S. Han, J. Wu, Y. Zhang, Z. Cai, et al., Characteristics and formation mechanism of a winter haze-fog episode in Tianjin, China, Atmos. Environ. 98(2014) 323-330. [25] X. Zhang, M. Mao, Brown haze types due to aerosol pollution at Hefei in the summer and fall, Chemosphere 119(2015) 1153-1162. [26] J. Li, H. Du, Z. Wang, Y. Sun, W. Yang, et al., Rapid formation of a severe regional winter haze episode over a megacity cluster on the North China Plain, Environ. Pollut. 223(2017) 605-615. [27] Y. Zhu, L. Huang, J. Li, Q. Ying, H. Zhang, et al., Sources of particulate matter in China:Insights from source apportionment studies published in 1987-2017, Environ. Int. 115(2018) 343-357. [28] Y. Yang, X. Liu, Y. Qu, J. Wang, J. An, Y. Zhang, F. Zhang, Formation mechanism of continuous extreme haze episodes in the megacity Beijing, China, in January 2013, Atmos. Res. 5(2015) 192-203. [29] X. Tie, Q. Zhang, H. He, J. Cao, S. Han, Y. Gao, et al., A budget analysis of the formation of haze in Beijing, Atmos. Environ. 100(2015) 25-36. [30] R. Zhang, X. Sun, A. Shi, Y. Huang, J. Yan, et al., Secondary inorganic aerosols formation during haze episodes at an urban site in Beijing, China, Atmos. Environ. 177(2018) 275-282. [31] R. Huang, Y. Zhang, C. Bozzetti, K. Ho, J. Cao, Y. Han, et al., High secondary aerosol contribution to particulate pollution during haze events in China, Nature 514(2014) 218-222. [32] S. Guo, M. Hu, M.L. Zamora, J. Peng, et al., Elucidating severe urban haze formation in China, Proc. Natl. Acad. Sci. U. S. A. 111(2014) 17373-17378. [33] W. Huang, X. Li, S. Yang, Y. Qian, Dynamic flexibility analysis of chemical reaction systems with time delay:Using a modified finite element collocation method, Chem. Eng. Res. Des. 89(2011) 1938-1946. [34] W. Huang, Y. Qian, Y. Shao, Y. Qiu, H. Fan, Delay sensitivity analysis for typical reactor systems with flexibility consideration, Ind. Eng. Chem. Res. 53(2014) 14721-14734. [35] W. Huang, H. Fan, Y. Qiu, F. Cheng, Assessment and computation of the delay tolerability for batch reactors under uncertainty, Chem. Eng. Res. Des. 124(2017) 74-84. [36] Z. Huang, Y. Lin, X. Wang, C. Ye, L. Li, Optimization and control of a reactive distillation process for the synthesis of dimethyl carbonate, Chin. J. Chem. Eng. 25(2017) 1079-1090. [37] Y. Sun, Q. Jiang, Y. Xu, Y. Ma, et al., Aerosol characterization over the North China Plain:Haze life cycle and biomass burning impacts in summer, J. Geophys. Res. Atmos. 121(2016) 2508-2521. [38] W. Huang, H. Fan, Y. Qiu, Z. Cheng, Y. Qian, Application of fault tree approach for the causation mechanism of urban haze in Beijing-Considering the risk events related with exhausts of coal combustion, Sci. Total Environ. 544(2016) 1128-1135. [39] W. Huang, P. Xu, Y. Qian, Causation mechanism analysis of urban haze based on FTA method:Taking Tianjin as a case study, CIESC J. 69(2018) 982-991. [40] W. Huang, H. Fan, Y. Qiu, Z. Cheng, P. Xu, Y. Qian, Causation mechanism analysis for haze pollution related to vehicle emission in Guangzhou, China by employing the fault tree approach, Chemosphere 151((2016) 9-16. [41] T. Bedford, R. Cooke, Probabilistic Risk Analysis:Foundations and Methods, Cambridge University Press, Cambridge, 2001. [42] R.F. Abdul, A. Varuttamaseni, M. Kintner-Meyer, J.C. Lee, Application of fault tree analysis for customer reliability assessment of a distribution power system, Reliab. Eng. Syst. Saf. 111(2013) 76-85. [43] S. Cheng, Z. Li, H. Mang, K. Neupane, M. Wauthelet, E.M. Huba, Application of fault tree approach for technical assessment of small-sized biogas systems in Nepal, Appl. Energy 113(2014) 1372-1381. [44] A. Lindhe, T. Norberg, L. Rosén, Approximate dynamic fault tree calculations for modelling water supply risks, Reliab. Eng. Syst. Saf. 106(2012) 61-71. [45] L. Placca, R. Kouta, Fault tree analysis for PEM fuel cell degradation process modelling, Int. J. Hydrogen Energy 36(2011) 393-405. [46] A. Volkanovski, M. Cepin, B. Mavko, Application of the fault tree analysis for assessment of power system reliability, Reliab. Eng. Syst. Saf. 94(2009) 1116-1127. [47] P. Zhang, J. Wu, Impact of mandatory targets on PM2.5 concentration control in Chinese cities, J. Clean. Prod. 197(2018) 323-331. [48] H. Fu, J. Chen, Formation, features and controlling strategies of severe haze-fog pollutions in China, Sci. Total Environ. 578(2017) 121-138. [49] G. Liu, Z. Yang, B. Chen, Y. Zhang, M. Su, S. Ulgiati, Prevention and control policy analysis for energy-related regional pollution management in China, Appl. Energy 166(2016) 292-300. [50] H. Zhang, S. Wang, J. Hao, X. Wang, S. Wang, et al., Air pollution and control action in Beijing, J. Clean. Prod. 112(2016) 1519-1527. [51] J. Tao, L. Zhang, Z. Zhang, R. Huang, Y. Wu, R. Zhang, J. Cao, Y. Zhang, Control of PM2.5 in Guangzhou during the 16th Asian Games period:Implication for hazy weather prevention, Sci. Total Environ. 508(2015) 57-66. [52] Q.C. Yang, C.W. Zhang, D.W. Zhang, H.R. Zhou, Development of a coke oven gas assisted coal to ethylene glycol process for high techno-economic performance and low emission, Ind. Eng. Chem. Res. 57(2018) 7600-7612. [53] Q.C. Yang, D.W. Zhang, H.R. Zhou, C.W. Zhang, Process simulation, analysis and optimization of a coal to ethylene glycol process, Energy 155(2018) 521-534. [54] G. Guan, Clean coal technologies in Japan:A review, Chin. J. Chem. Eng. 25(2017) 689-697. [55] Z. Zhang, W. Wang, M. Cheng, S. Liu, J. Xu, et al., The contribution of residential coal combustion to PM2.5 pollution over China's Beijing-Tianjin-Hebei region in winter, Atmos. Environ. 159(2017) 147-161. [56] D. Wu, X. M, S. Zhang, Integrating synergistic effects of air pollution control technologies:More cost-effective approach in the coal-fired sector in China, J. Clean. Prod. 199(2018) 1035-1042. [57] D. Sun, J. Fang, J. Sun, Health-related benefits of air quality improvement from coal control in China:Evidence from the Jing-Jin-Ji region, Resour. Conserv. Recycl. 129(2018) 416-423. [58] Y. Zhang, C. Liu, K. Li, Y. Zhou, Strategy on China's regional coal consumption control:A case study of Shandong province, Energy Policy 112(2018) 316-327. [59] X. Yang, F. Teng, The air quality co-benefit of coal control strategy in China, Resour. Conserv. Recycl. 129(2018) 373-382. |