[1] I.F. Makogon, I.U.r.F. Makogon, Y.F. Makogon, Hydrates of Hydrocarbons, Pennwell Books, 1997. [2] R. Boswell, T.S. Collett, Current perspectives on gas hydrate resources, Energy Environ. Sci. 4(2011) 1206-1215. [3] D. Archer, Methane hydrate stability and anthropogenic climate change, Biogeosci. Discuss. 4(2007) 993-1057. [4] K.A. Kvenvolden, Methane hydrate-a major reservoir of carbon in the shallow geosphere? Chem. Geol. 71(1988) 41-51. [5] E.D. Sloan Jr., C. Koh, Clathrate Hydrates of Natural Gases, CRC Press, 2007. [6] S.-Y. Lee, G.D. Holder, Methane hydrates potential as a future energy source, Fuel Process. Technol. 71(2001) 181-186. [7] C. Wu, K. Zhao, C. Sun, D.-s. Sun, X.-h. Xu, X.-h. Chen, L. Xuan, Current research in natural gas hydrate production, Geol. Sci. Technol. Inf. 27(2008) 47-52. [8] G.J. Moridis, M.B. Kowalsky, K. Pruess, Depressurization-induced gas production from class-1 hydrate deposits, SPE Reserv. Eval. Eng. 10(2007) 458-481. [9] Q. Yuan, C.-Y. Sun, X. Yang, P.-C. Ma, Z.-W. Ma, B. Liu, Q.-L. Ma, L.-Y. Yang, G.-J. Chen, Recovery of methane from hydrate reservoir with gaseous carbon dioxide using a three-dimensional middle-size reactor, Energy 40(2012) 47-58. [10] T.S. Collett, Arctic Gas Hydrate Energy Assessment Studies, The Arctic Energy Summit, Anchorage, Alaska, 200715-18. [11] G. Moridis, M. Reagan, Gas Production from Oceanic Class 2 Hydrate Accumulations, Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US), 2007. [12] R.M. Haberer, K. Mangelsdorf, H. Wilkes, B. Horsfield, Occurrence and palaeoenvironmental significance of aromatic hydrocarbon biomarkers in Oligocene sediments from the Mallik 5L-38 Gas Hydrate Production Research Well (Canada), Org. Geochem. 37(2006) 519-538. [13] T. Grover, S.A. Holditch, G. Moridis, Analysis of reservoir performance of Messoyakha gas hydrate field, The Eighteenth International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers, 2008. [14] S. Uchida, A. Klar, K. Yamamoto, Sand production model in gas hydrate-bearing sediments, Int. J. Rock Mech. Min. Sci. 86(2016) 303-316. [15] M. Ota, K. Morohashi, Y. Abe, M. Watanabe, R.L. Smith Jr., H. Inomata, Replacement of CH4 in the hydrate by use of liquid CO2, Energy Convers. Manag. 46(2005) 1680-1691. [16] M. Pooladi-Darvish, H. Hong, Effect of Conductive and Convective Heat Flow on Gas Production from Natural Hydrates by Depressurization, Advances in the Study of Gas Hydrates, Springer, 200443-65. [17] Y. Konno, Y. Jin, K. Shinjou, J. Nagao, Experimental evaluation of the gas recovery factor of methane hydrate in sandy sediment, RSC Adv. 4(2014) 51666-51675. [18] G.C. Fitzgerald, M.J. Castaldi, J.M. Schicks, Methane hydrate formation and thermal based dissociation behavior in silica glass bead porous media, Ind. Eng. Chem. Res. 53(2014) 6840-6854. [19] P. Linga, A. Adeyemo, P. Englezos, Medium-pressure clathrate hydrate/membrane hybrid process for postcombustion capture of carbon dioxide, Environ. Sci. Technol. 42(2007) 315-320. [20] X. Zhou, D. Liang, S. Liang, L. Yi, F. Lin, Recovering CH4 from natural gas hydrates with the injection of CO2-N2 gas mixtures, Energy Fuel 29(2015) 1099-1106. [21] Y. Song, C. Cheng, J. Zhao, Z. Zhu, W. Liu, M. Yang, K. Xue, Evaluation of gas production from methane hydrates using depressurization, thermal stimulation and combined methods, Appl. Energy 145(2015) 265-277. [22] S. Falser, S. Uchida, A. Palmer, K. Soga, T. Tan, Increased gas production from hydrates by combining depressurization with heating of the wellbore, Energy Fuel 26(2012) 6259-6267. [23] Z. Liu, L. Wang, B. Zhao, J. Leng, G. Zhang, D. Yang, Heat transfer in sandstones at low temperature, Rock Mech. Rock. Eng. (2018) 1-11. [24] W.F. Waite, L.A. Stern, S. Kirby, W.J. Winters, D. Mason, Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate, Geophys. J. Int. 169(2007) 767-774. [25] S.P. Kang, H. Lee, B.J. Ryu, Enthalpies of dissociation of clathrate hydrates of carbon dioxide, nitrogen, (carbon dioxide + nitrogen), and (carbon dioxide + nitrogen + tetrahydrofuran), J. Chem. Thermodyn. 33(2001) 513-521. [26] M.W. Lee, Well Log Analysis to Assist the Interpretation of 3-D Seismic Data at Milne Point, North Slope of Alaska, US Department of the Interior, US Geological Survey, 2005. [27] V.P. Voronov, E.E. Gorodetskii, S.S. Safonov, Thermodynamic properties of methane hydrate in quartz powder, J. Phys. Chem. B 111(2007) 11486-11496. [28] Z. Zhang, Heat transfer during the dissociation of hydrate in porous media, Procedia Eng. 126(2015) 502-506. [29] W. Waite, B. DeMartin, S. Kirby, J. Pinkston, C. Ruppel, Thermal conductivity measurements in porous mixtures of methane hydrate and quartz sand, Geophys. Res. Lett. 29(2002) 821-824. [30] D. Huang, S. Fan, Measuring and modeling thermal conductivity of gas hydratebearing sand, J. Geophys. Res. Solid Earth 110(2005), B01311. [31] E.J. Rosenbaum, N.J. English, J.K. Johnson, D.W. Shaw, R.P. Warzinski, Thermal conductivity of methane hydrate from experiment and molecular simulation, J. Phys. Chem. B 111(2007) 13194-13205. [32] D.D. Cortes, A.I. Martin, T.S. Yun, F.M. Francisca, J.C. Santamarina, C. Ruppel, Thermal conductivity of hydrate-bearing sediments, J. Geophys. Res. Solid Earth 114(2009), B11103. [33] W.F. Waite, L. Gilbert, W.J. Winters, D.H. Mason, Thermal property measurements in Tetrahydrofuran (THF) hydrate and hydrate-bearing sediment between -25 and+4 C, and their application to methane hydrate, Fifth International Conference on Gas Hydrates, Tapir Acad. Trondheim, Norway 2005, pp. 1724-1733. [34] S. Dai, J.H. Cha, E.J. Rosenbaum, W. Zhang, Y. Seol, Thermal conductivity measurements in unsaturated hydrate-bearing sediments, Geophys. Res. Lett. 42(2015) 6295-6305. [35] W.F. Waite, J.C. Santamarina, D.D. Cortes, B. Dugan, D. Espinoza, J. Germaine, J. Jang, J. Jung, T.J. Kneafsey, H. Shin, Physical properties of hydrate-bearing sediments, Rev. Geophys. 47(2009), 2008RG000279. [36] A. Revil, Thermal conductivity of unconsolidated sediments with geophysical applications, J. Geophys. Res. Solid Earth 105(2000) 16749-16768. [37] J.C. Maxwell, A Treatise on Electricity and Magnetism, Clarendon press, 1881. [38] W. Woodside, J. Messmer, Thermal conductivity of porous media. I. Unconsolidated sands, J. Appl. Phys. 32(1961) 1688-1699. [39] R. Krupiczka, Analysis of thermal conductivity in granular materials, Int. Chem. Eng. 7(1967) 122-144. [40] A. Johnson, S. Patil, A. Dandekar, Experimental investigation of gas-water relative permeability for gas-hydrate-bearing sediments from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope, Mar. Pet. Geol. 28(2011) 419-426. [41] B. Li, X.-S. Li, G. Li, J.-L. Jia, J.-C. Feng, Measurements of water permeability in unconsolidated porous media with methane hydrate formation, Energies 6(2013) 3622-3636. [42] Y. Konno, J. Yoneda, K. Egawa, T. Ito, Y. Jin, M. Kida, K. Suzuki, T. Fujii, J. Nagao, Permeability of sediment cores from methane hydrate deposit in the Eastern Nankai Trough, Mar. Pet. Geol. 66(2015) 487-495. [43] H. Minagawa, Y. Nishikawa, I. Ikeda, K. Miyazaki, N. Takahara, Y. Sakamoto, T. Komai, H. Narita, Characterization of sand sediment by pore size distribution and permeability using proton nuclear magnetic resonance measurement, J. Geophys. Res. Solid Earth 113(2008), B07210. [44] M.L. Delli, J.L. Grozic, Experimental determination of permeability of porous media in the presence of gas hydrates, J. Pet. Sci. Eng. 120(2014) 1-9. [45] R. Kleinberg, C. Flaum, D. Griffin, P. Brewer, G. Malby, E. Peltzer, J. Yesinowski, Deep sea NMR:Methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation, and submarine slope stability, J. Geophys. Res. Solid Earth 108(B10) (2003) 2508. [46] A. Kumar, B. Maini, P. Bishnoi, M. Clarke, O. Zatsepina, S. Srinivasan, Experimental determination of permeability in the presence of hydrates and its effect on the dissociation characteristics of gas hydrates in porous media, J. Pet. Sci. Eng. 70(2010) 114-122. [47] Y. Masuda, Numerical calculation of gas production performance from reservoirs containing natural gas hydrates, Annual Technical Conference, Soc. of Petrol. Eng., San Antonio, Tex, Oct. 1997. [48] R.D. Stoll, G.M. Bryan, Physical properties of sediments containing gas hydrates, J. Geophys. Res. Solid Earth 84(1979) 1629-1634. [49] X. Liu, P.B. Flemings, Dynamic multiphase flow model of hydrate formation in marine sediments, J. Geophys. Res. Solid Earth 112(2007), B03101. [50] M. Leverett, Capillary behavior in porous solids, Trans. AIME 142(1941) 152-169. [51] J. Rutqvist, G.J. Moridis, Numerical studies on the geomechanical stability of hydrate-bearing sediments, Offshore Technology Conference, Offshore Technology Conference, 2007. [52] A. Masui, K. Miyazaki, H. Haneda, Y. Ogata, K. Aoki, Mechanical Characteristics of Natural and Artificial Gas Hydrate Bearing Sediments, Proceedings of the 6th International Conference on Gas Hydrates, ICGH, Vancouver, Canada, 20086-10. [53] F. Ning, Y. Yu, S. Kjelstrup, T.J. Vlugt, K. Glavatskiy, Mechanical properties of clathrate hydrates:Status and perspectives, Energy Environ. Sci. 5(2012) 6779-6795. [54] N. Sultan, P. Cochonat, J.-P. Foucher, J. Mienert, Effect of gas hydrates melting on seafloor slope instability, Mar. Geol. 213(2004) 379-401. [55] M. Nixon, J.L. Grozic, Submarine slope failure due to gas hydrate dissociation:A preliminary quantification, Can. Geotech. J. 44(2007) 314-325. [56] M. Helgerud, W.F. Waite, S. Kirby, A. Nur, Elastic wave speeds and moduli in polycrystalline ice Ih, sI methane hydrate, and sII methane-ethane hydrate, J. Geophys. Res. Solid Earth 114(2009), B02212. [57] J. Wu, F. Ning, T.T. Trinh, S. Kjelstrup, T.J.H. Vlugt, J. He, B.H. Skallerud, Z. Zhang, Mechanical instability of monocrystalline and polycrystalline methane hydrates, Nat. Commun. 6(2015) 8743. [58] W.B. Durham, S.H. Kirby, L.A. Stern, W. Zhang, The strength and rheology of methane clathrate hydrate, J. Geophys. Res. Solid Earth 108(B4) (2003) 2182. [59] H. Shimizu, T. Kumazaki, T. Kume, S. Sasaki, Elasticity of single-crystal methane hydrate at high pressure, Phys. Rev. B 65(2002) 212102. [60] H. Hirai, T. Kondo, M. Hasegawa, T. Yagi, Y. Yamamoto, T. Komai, K. Nagashima, M. Sakashita, H. Fujihisa, K. Aoki, Methane hydrate behavior under high pressure, J. Phys. Chem. B 104(2000) 1429-1433. [61] J. Loveday, R. Nelmes, M. Guthrie, S. Belmonte, D. Allan, D. Klug, J. Tse, Y. Handa, Stable methane hydrate above 2 GPa and the source of Titan's atmospheric methane, Nature 410(2001) 661. [62] L.A. Stern, S.H. Kirby, W.B. Durham, Polycrystalline methane hydrate:synthesis from superheated ice, and low-temperature mechanical properties, Energy Fuel 12(1998) 201-211. [63] T.S. Yun, J.C. Santamarina, C. Ruppel, Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate, J. Geophys. Res. Solid Earth 112(2007), B04106. [64] Z. Liu, S. Dai, F. Ning, L. Peng, H. Wei, C. Wei, Strength estimation for hydratebearing sediments from direct shear tests of hydrate-bearing sand and silt, Geophys. Res. Lett. 45(2018) 715-723. [65] M.Hyodo,J.Yoneda,N.Yoshimoto,Y.Nakata,Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed, Soils Found. 53(2013) 299-314. [66] R. Yan, C. Wei, Constitutive model for gas hydrate-bearing soils considering hydrate occurrence habits, Int. J. Geomech. 17(8) (2017) 1-6(04017032). [67] A.W. Bishop, The principle of effective stress, Teknisk ukeblad 39(1959) 859-863. [68] A. Klar, K. Soga, M. Ng, Coupled deformation-flow analysis for methane hydrate extraction, Geotechnique 60(2010) 765-776. [69] A. Klar, S. Uchida, K. Soga, K. Yamamoto, Explicitly coupled thermal flow mechanical formulation for gas-hydrate sediments, SPE J. 18(2013) 196-206. [70] C.-Y. Sun, G.-J. Chen, Methane hydrate dissociation above 0 C and below 0 C, Fluid Phase Equilib. 242(2006) 123-128. [71] K. Su, C. Sun, X. Yang, G. Chen, S. Fan, Experimental investigation of methane hydrate decomposition by depressurizing in porous media with 3-dimension device, J. Nat. Gas Chem. 19(2010) 210-216. [72] X. Yang, C.-Y. Sun, K.-H. Su, Q. Yuan, Q.-P. Li, G.-J. Chen, A three-dimensional study on the formation and dissociation of methane hydrate in porous sediment by depressurization, Energy Convers. Manag. 56(2012) 1-7. [73] L.-G. Tang, X.-S. Li, Z.-P. Feng, G. Li, S.-S. Fan, Control mechanisms for gas hydrate production by depressurization in different scale hydrate reservoirs, Energy Fuel 21(2007) 227-233. [74] Y. Zhou, M.J. Castaldi, T.M. Yegulalp, Experimental investigation of methane gas production from methane hydrate, Ind. Eng. Chem. Res. 48(2009) 3142-3149. [75] J. Lee, S. Park, W. Sung, An experimental study on the productivity of dissociated gas from gas hydrate by depressurization scheme, Energy Convers. Manag. 51(2010) 2510-2515. [76] X.-S. Li, Y. Zhang, Study on dissociation behaviors of methane hydrate in porous media based on experiments and fractional dimension shrinking-core model, Ind. Eng. Chem. Res. 50(2011) 8263-8271. [77] C. Haligva, P. Linga, J.A. Ripmeester, P. Englezos, Recovery of methane from a variable-volume bed of silica sand/hydrate by depressurization, Energy Fuel 24(2010) 2947-2955. [78] X.-S. Li, Y. Zhang, G. Li, Z.-Y. Chen, H.-J. Wu, Experimental investigation into the production behavior of methane hydrate in porous sediment by depressurization with a novel three-dimensional cubic hydrate simulator, Energy Fuel 25(2011) 4497-4505. [79] G. Li, B. Li, X.-S. Li, Y. Zhang, Y. Wang, Experimental and numerical studies on gas production from methane hydrate in porous media by depressurization in pilotscale hydrate simulator, Energy Fuel 26(2012) 6300-6310. [80] B. Li, X.-S. Li, G. Li, J.-C. Feng, Y. Wang, Depressurization induced gas production from hydrate deposits with low gas saturation in a pilot-scale hydrate simulator, Appl. Energy 129(2014) 274-286. [81] Y. Zhang, X.-S. Li, Z.-Y. Chen, Y. Wang, X.-K. Ruan, Effect of hydrate saturation on the methane hydrate dissociation by depressurization in sediments in a cubic hydrate simulator, Ind. Eng. Chem. Res. 54(2015) 2627-2637. [82] Y. Kamata, T. Ebinuma, R. Omura, H. Minagawa, H. Narita, Y. Masuda, Y. Konno, Decomposition experiment of methane hydrate sediment by thermal recovery method, Proceedings of the 5th International Conference on Gas Hydrates 2005, pp. 81-85. [83] L.G. Tang, R. Xiao, C. Huang, Z. Feng, S.S. Fan, Experimental investigation of production behavior of gas hydrate under thermal stimulation in unconsolidated sediment, Energy Fuel 19(2005) 2402-2407. [84] G. Li, X.-S. Li, Y. Wang, Y. Zhang, Production behavior of methane hydrate in porous media using huff and puff method in a novel three-dimensional simulator, Energy 36(2011) 3170-3178. [85] T.-H. Kwon, H.-S. Kim, G.-C. Cho, Dissociation behavior of CO2 hydrate in sediments during isochoric heating, Environ. Sci. Technol. 42(2008) 8571-8577. [86] X. Yang, C.-Y. Sun, Q. Yuan, P.-C. Ma, G.-J. Chen, Experimental study on gas production from methane hydrate-bearing sand by hot-water cyclic injection, Energy Fuel 24(2010) 5912-5920. [87] S. Li, L. Zhang, X. Jiang, X. Li, Hot-brine injection for the dissociation of natural gas hydrates, Pet. Sci. Technol. 31(2013) 1320-1326. [88] H. Tian, C. Wei, R. Yan, H. Chen, A NMR-based analysis of carbon dioxide hydrate dissociation process in silt, Sci. Sin. Phys. Mech. Astron. 49(3) (2019), 034615(in Chinese). [89] H. Chen, C. Wei, H. Tian, H. Wei, NMR relaxation response of CO2 hydrate formation and dissociation in sand, Acta Phys. -Chim. Sin. 33(8) (2017) 1599-1604. [90] X.-x. Guo, X. Sun, L.-t. Shao, B.-y. Zhao, Current Situation of Constitutive Model for Soils Based on Thermodynamics Approach, Constitutive Modeling of Geomaterials, Springer, 2013547-552. [91] N. Goel, M. Wiggins, S. Shah, Analytical modeling of gas recovery from in situ hydrates dissociation, J. Pet. Sci. Eng. 29(2001) 115-127. [92] J. Rutqvist, G.J. Moridis, Development of a Numerical Simulator for Analyzing the Geomechanical Performance of Hydrate-bearing Sediments, Lawrence Berkeley National Laboratory, California, USA, 2008. [93] M. Uddin, F. Wright, D.A. Coombe, Numerical study of gas evolution and transport behaviours in natural gas-hydrate reservoirs, J. Can. Pet. Technol. 50(2011) 70-89. [94] Y. Masuda, A field-scale simulation study on gas productivity of formations containing gas hydrates, Proc. 4th International Conference on Gas Hydrates, Yokohama, Japan, 20022002, pp. 40-46. [95] G. Ahmadi, C. Ji, D.H. Smith, Numerical solution for natural gas production from methane hydrate dissociation, J. Pet. Sci. Eng. 41(2004) 269-285. [96] A. Bejan, L. Rocha, R. Cherry, Methane Hydrates in Porous Layers:Gas Formation and Convection, Transport Phenomena in Porous Media II, Elsevier, 2002365-396. [97] G.G. Tsypkin, Mathematical models of gas hydrates dissociation in porous media, Ann. N. Y. Acad. Sci. 912(2000) 428-436. [98] E. Bondarev, T. Kapitonova, Simulation of multiphase flow in porous media accompanied by gas hydrate formation and dissociation, Russ. J. Eng. Thermophys. 9(1-2) (1999) 83-95. [99] F. Oka, S. Kimoto, Y. Kim, N. Takada, Y. Higo, A finite element analysis of the thermo-hydro-mechanically coupled problem of cohesive deposit using a thermo-elasto-viscoplastic model, Poromechanics-Biot-centennial, Proc. 3rd Biot Conference on Poromechanics, Balkema 2005, pp. 383-388. [100] S. Kimoto, F. Oka, T. Fushita, M. Fujiwaki, A chemo-thermo-mechanically coupled numerical simulation of the subsurface ground deformations due to methane hydrate dissociation, Comput. Geotech. 34(2007) 216-228. [101] J. Rutqvist, G.J. Moridis, Coupled hydrologic, thermal and geomechanical analysis of well bore stability in hydrate-bearing sediments, Offshore Technology Conference, 2008. [102] J. Rutqvist, G. Moridis, T. Grover, T. Collett, Geomechanical response of permafrostassociated hydrate deposits to depressurization-induced gas production, J. Pet. Sci. Eng. 67(2009) 1-12. [103] J. Kim, G.J. Moridis, Development of the T+ M coupled flow-geomechanical simulator to describe fracture propagation and coupled flow-thermal-geomechanical processes in tight/shale gas systems, Comput. Geosci. 60(2013) 184-198. [104] R. Freij-Ayoub, C. Tan, B. Clennell, B. Tohidi, J. Yang, A wellbore stability model for hydrate bearing sediments, J. Pet. Sci. Eng. 57(2007) 209-220. [105] C.P. Tan, R. Freij-Ayoub, M.B. Clennell, B. Tohidi, J. Yang, Managing wellbore instability risk in gas hydrate-bearing sediments, SPE Asia Pacific Oil and Gas Conference and Exhibition, Society of Petroleum Engineers, 2005. [106] M. Liu, Y. Jin, Y. Lu, M. Chen, B. Hou, W. Chen, X. Wen, X. Yu, A wellbore stability model for a deviated well in a transversely isotropic formation considering poroelastic effects, Rock Mech. Rock. Eng. 49(2016) 3671-3686. [107] W. Cao, J. Deng, B. Yu, W. Liu, Q. Tan, Offshore wellbore stability analysis based on fully coupled poro-thermo-elastic theory, J. Geophys. Eng. 14(2017) 380. [108] Y. Cao, J. Deng, Wellbore stability research of heterogeneous formation, J. Appl. Sci. 14(2014) 33-39. [109] J. Jung, J. Jang, J. Santamarina, C. Tsouris, T. Phelps, C. Rawn, Gas production from hydrate-bearing sediments:the role of fine particles, Energy Fuel 26(2011) 480-487. [110] H. Oyama, J. Nagao, K. Suzuki, H. Narita, Experimental analysis of sand production from methane hydrate bearing sediments applying depressurization method, J. MMIJ 126(2010) 497-502. [111] J. Lu, Y. Xiong, D. Li, X. Shen, Q. Wu, D. Liang, Experimental investigation of characteristics of sand production in wellbore during hydrate exploitation by the depressurization method, Energies 11(2018) 1673. [112] A. Murphy, K. Soga, K. Yamamoto, A laboratory investigation of sand production simulating the 2013 Daini-Atsumi Knoll gas hydrate production trial using a high pressure plane strain testing apparatus, Proceedings of the 9th International Conferences on Gas Hydrate. Denver, Colorado, USA:ICGH9, 2017. [113] A. Klar, S. Uchida, Z. Charas, K. Yamamoto, Thermo-hydro-mechanical sand production model in hydrate-bearing sediments, International EAGE Workshop on Geomechanics and Energy, 2013. [114] M. Zhou, K. Soga, E. Xu, S. Uchida, K. Yamamoto, Numerical study on eastern Nankai Trough gas hydrate production test, Offshore Technology Conference, 2014. [115] E. Xu, K. Soga, M. Zhou, S. Uchida, K. Yamamoto, Numerical analysis of wellbore behaviour during methane gas recovery from hydrate bearing sediments, Offshore Technology Conference, 2014. [116] J. Grozic, Interplay between Gas Hydrates and Submarine Slope Failure, Submarine mass movements and their consequences, Springer, 201011-30. [117] J. Grozic, T. Kvalstad, Effect of gas on deepwater marine sediments, Proceedings of the International Conference on Soil Mechanics and Geotechnical Engineering, aa balkema publishers 2001, pp. 2289-2294. [118] X. Long, K.M. Tjok, C.S. Wright, A.F. Witthoeft, Assessing well integrity using numerical simulation of Wellbore stability during production in gas hydrate bearing sediments, Offshore Technology Conference, 2014. [119] H. Zhang, Y. Cheng, Q. Li, C. Yan, X. Han, Numerical analysis of wellbore instability in gashydrateformationduringdeep-waterdrilling, J. Ocean Univ. China17(2018)8-16. [120] Z. Liu, X. Yu, Thermo-hydro-mechanical-chemical simulation of methane hydrate dissociation in porous media, Geotech. Geol. Eng. 31(2013) 1681-1691. [121] S. Kimoto, F. Oka, T. Fushita, A chemo-thermo-mechanically coupled analysis of ground deformation induced by gas hydrate dissociation, Int. J. Mech. Sci. 52(2010) 365-376. |