中国化学工程学报 ›› 2019, Vol. 27 ›› Issue (9): 2118-2132.DOI: 10.1016/j.cjche.2019.02.023
• Special Issue on Natural Gas Hydrate • 上一篇 下一篇
Yanhong Wang, Shuanshi Fan, Xuemei Lang
收稿日期:
2018-11-14
修回日期:
2019-02-02
出版日期:
2019-09-28
发布日期:
2019-12-04
通讯作者:
Yanhong Wang
基金资助:
Yanhong Wang, Shuanshi Fan, Xuemei Lang
Received:
2018-11-14
Revised:
2019-02-02
Online:
2019-09-28
Published:
2019-12-04
Contact:
Yanhong Wang
Supported by:
摘要: During the development and application of natural gas, hydrate plugging the pipelines is a very important issue to solve. Currently, adding thermodynamic hydrate inhibitors (THIs) and kinetic hydrate inhibitors (KHIs) in gas-dominated pipelines is a main way to prevent hydrate plugging of flow lines. This paper mainly reviews the efforts to develop THIs and KHIs in the past 20 years, compare the role of various THIs, such as methanol, ethylene glycol and electrolyte, and give the tips in using. The direction of KHIs is toward high efficiency, low toxicity, low pollution and low cost. More than a hundred inhibitors, including polymers, natural products and ionic liquids, have been synthesized in the past decade. Some of them have better performance than the current commercial KHIs. However, there are still few problems, such as the complex synthesis process, high cost and low solubility, impeding the commercialization of these inhibitors. The review also summarized some application of KHIs in China. Research of KHIs in China began late. There are no KHIs used in gas pipelines. Only a few field tests have been carried out. In the end of this paper, the field test of self-developed KHIs by China is summarized, and the guidance is given according to the application results.
Yanhong Wang, Shuanshi Fan, Xuemei Lang. Reviews of gas hydrate inhibitors in gas-dominant pipelines and application of kinetic hydrate inhibitors in China[J]. 中国化学工程学报, 2019, 27(9): 2118-2132.
Yanhong Wang, Shuanshi Fan, Xuemei Lang. Reviews of gas hydrate inhibitors in gas-dominant pipelines and application of kinetic hydrate inhibitors in China[J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2118-2132.
[1] E.D. Sloan Jr., C.A. Koh, Clathrate hydrate of natural gases, 3rd ed. CRC Press, Boca Raton, 2007. [2] E.G. Hammerschmidt, Formation of gas hydrates in natural gas transmission lines, Industrial & Engineering Chemistry 26(8) (1934) 851-855. [3] B. Wang, H. Dong, Y. Liu, X. Lv, Y. Liu, J. Zhao, Y. Song, Evaluation of thermal stimulation on gas production from depressurized methane hydrate deposits, Appl. Energy 227(2018) 710-718. [4] J.F. Zhao, D. Liu, M.J. Yang, Y.C. Song, Analysis of heat transfer effects on gas production from methane hydrate by depressurization, Int. J. Heat Mass Transf. 77(2014) 529-541. [5] J.F. Zhao, J.Q. Wang, W.G. Liu, Y.C. Song, Analysis of heat transfer effects on gas production from methane hydrate by thermal stimulation, Int. J. Heat Mass Transf. 87(2015) 145-150. [6] B. Wang, H. Dong, Z. Fan, J. Zhao, Y. Song, Gas production from methane hydrate deposits induced by depressurization in conjunction with thermal stimulation, Energy Procedia 105(2017) 4713-4717. [7] L. Zhang, Y. Kuang, X. Zhang, Y. Song, Y. Liu, J. Zhao, Analyzing the process of gas production from methane hydrate via nitrogen injection, Ind. Eng. Chem. Res. 56(26) (2017) 7585-7592. [8] M. Kelland, Natural gas hydrates:Energy for the future, Mar. Pollut. Bull. 29(6-12) (1994) 307-311. [9] J. Sjoeblom, B. Ovrevoll, G. Jentoft, C. Lesaint, T. Palermo, A. Sinquin, P. Gateau, L. Barre, S. Subramanian, J. Boxall, S. Davies, L. Dieker, D. Greaves, J. Lachance, P. Rensing, K. Miller, E.D. Sloan, C.A. Koh, Investigation of the hydrate plugging and non-plugging properties of oils, J. Dispers. Sci. Technol. 31(8) (2010) 1100-1119. [10] S.R. Xu, S.S. Fan, H.Y. Yao, Y.H. Wang, X.M. Lang, P.P. Lv, S.T. Fang, The phase equilibria of multicomponent gas hydrate in methanol/ethylene glycol solution based formation water, J. Chem. Thermodyn. 104(2017) 212-217. [11] H. Kim, W. Yoo, Y. Lim, Y. Seo, Economic evaluation of MEG injection and regeneration process for oil FPSO, J. Pet. Sci. Eng. 164(2018) 417-426. [12] L. Zhang, A.Y. Huang, W. Wang, S.R. Ren, S.K. Jin, D. Fang, Hydrate risks and prevention solutions for a high pressure gas field offshore in South China Sea, International Journal of Oil Gas and Coal Technology 6(6) (2013) 613-623. [13] K. Li, R. Shi, Y. Huang, L. Tang, X. Cao, Y. Su, J. Zhao, Dissociation mechanism of propane hydrate with methanol additive:A molecular dynamics simulation, Computational and Theoretical Chemistry 1123(2018) 79-86. [14] G. Song, Y. Li, W. Wang, K. Jiang, Z. Shi, X. Ye, P. Zhao, Experimental study of hydrate dissociation in oil-dominated systems using a high-pressure visual cell, Journal of Natural Gas Science and Engineering 45(2017) 26-37. [15] M. Aminnaji, B. Tohidi, R. Burgass, M. Atilhan, Gas hydrate blockage removal using chemical injection in vertical pipes, Journal of Natural Gas Science and Engineering 40(2017) 17-23. [16] M. Aminnaji, B. Tohidi, R. Burgass, M. Atilhan, Effect of injected chemical density on hydrate blockage removal in vertical pipes:Use of MEG/MeOH mixture to remove hydrate blockage, Journal of Natural Gas Science and Engineering 45(2017) 840-847. [17] J. Javanmardi, S. Babaee, A. Eslamimanesh, A.H. Mohammadi, Experimental measurements and predictions of gas hydrate dissociation conditions in the presence of methanol and ethane-1,2-diol aqueous solutions, Journal of Chemical and Engineering Data 57(5) (2012) 1474-1479. [18] M.D. Jager, E.D. Sloan, The effect of pressure on methane hydration in pure water and sodium chloride solutions, Fluid Phase Equilib. 185(1-2) (2001) 89-99. [19] H. Haghighi, A. Chapoy, R. Burgess, S. Mazloum, B. Tohidi, Phase equilibria for petroleum reservoir fluids containing water and aqueous methanol solutions:Experimental measurements and modelling using the CPA equation of state, Fluid Phase Equilib. 278(1-2) (2009) 109-116. [20] A.H. Mohammadi, D. Richon, Phase equilibria of methane hydrates in the presence of methanol and/or ethylene glycol aqueous solutions, Ind. Eng. Chem. Res. 49(2) (2010) 925-928. [21] A.H. Mohammadi, D. Richon, Gas hydrate phase equilibrium in the presence of ethylene glycol or methanol aqueous solution, Ind. Eng. Chem. Res. 49(18) (2010) 8865-8869. [22] A.H. Mohammadi, D. Richon, Gas hydrate phase equilibrium in methane + ethylene glycol, diethylene glycol, or triethylene glycol + water system, J. Chem. Eng. Data 56(12) (2011) 4544-4548. [23] Y. Hu, B.R. Lee, A.K. Sum, Phase equilibrium data of methane hydrates in mixed brine solutions, Journal of Natural Gas Science and Engineering 46(2017) 750-755. [24] J. Du, X. Wang, H. Liu, P. Guo, Z. Wang, S. Fan, Experiments and prediction of phase equilibrium conditions for methane hydrate formation in the NaCl, CaCl2, MgCl2 electrolyte solutions, Fluid Phase Equilib. 479(2019) 1-8. [25] Z. Atik, C. Windmeier, L.R. Oellrich, Experimental gas hydrate dissociation pressures for pure methane in aqueous solutions of MgCl2 and CaCl2 and for a (methane + ethane) gas mixture in an aqueous solution of (NaCl + MgCl2), J. Chem. Eng. Data 51(5) (2006) 1862-1867. [26] M.-K. Chun, H. Lee, B.-J. Ryu, Phase equilibria of r22(chclf2) hydrate systems in the presence of NaCl, KCl, and MgCl2, J. Chem. Eng. Data 45(6) (2000) 1150-1153. [27] B. Tohidi, A. Danesh, A.C. Todd, R.W. Burgass, Hydrate-free zone for synthetic and real reservoir fluids in the presence of saline water, Chem. Eng. Sci. 52(19) (1997) 3257-3263. [28] Q.N. Lv, X.R. Zang, X.S. Li, G. Li, Effect of seawater ions on cyclopentane-methane hydrate phase equilibrium, Fluid Phase Equilib. 458(2018) 272-277. [29] Z.R. Chong, J.W. Koh, P. Linga, Effect of KCl and MgCl2 on the kinetics of methane hydrate formation and dissociation in sandy sediments, Energy 137(2017) 518-529. [30] N.N. Nguyen, A.V. Nguyen, Hydrophobic effect on gas hydrate formation in the presence of additives, Energy Fuel 31(10) (2017) 10311-10323. [31] N.N. Nguyen, A.V. Nguyen, The dual effect of sodium halides on the formation of methane gas hydrate, Fuel 156(2015) 87-95. [32] F. Farhang, A.V. Nguyen, M.A. Hampton, Influence of sodium halides on the kinetics of CO2 hydrate formation, Energy Fuel 28(2) (2014) 1220-1229. [33] N. Choudhary, O.S. Kushwaha, G. Bhattacharjee, S. Chakrabarty, R. Kumar, Molecular dynamics simulation and experimental study on the growth of methane hydrate in presence of methanol and sodium chloride, in:J. Yan, et al., (Eds.), 8th International Conference on Applied Energy, Elsevier Science Bv, Amsterdam, 2017, (Number of 5026-5033). [34] M.D. Jager, C.J. Peters, E.D. Sloan, Experimental determination of methane hydrate stability in methanol and electrolyte solutions, Fluid Phase Equilib. 193(1-2) (2002) 17-28. [35] P.G. Lafond, K.A. Olcott, E.D. Sloan, C.A. Koh, A.K. Sum, Measurements of methane hydrate equilibrium in systems inhibited with NaCl and methanol, J. Chem. Thermodyn. 48(2012) 1-6. [36] P.D. Dholabhai, J.S. Parent, P.R. Bishnoi, Equilibrium conditions for hydrate formation from binary mixtures of methane and carbon dioxide in the presence of electrolytes, methanol and ethylene glycol, Fluid Phase Equilib. 141(1-2) (1997) 235-246. [37] Majumdar, A., Mahmoodaghdam, E., and Bishnoi, P.R., Equilibrium hydrate formation conditions for hydrogen sulfide, carbon dioxide, and ethane in aqueous solutions of ethylene glycol and sodium chloride. 2000. 20-22. [38] C. Eichholz, A. Majumdar, M.A. Clarke, L.R. Oellrich, P.R. Bishnoi, Experimental investigation and calculation of methane hydrate formation conditions in the presence of ethylene glycol and sodium chloride, J. Chem. Eng. Data 49(4) (2004) 847-851. [39] R. Masoudi, B. Tohidi, On modelling gas hydrate inhibition by salts and organic inhibitors, J. Pet. Sci. Eng. 74(3-4) (2010) 132-137. [40] R. Masoudi, B. Tohidi, A. Danesh, A.C. Todd, J. Yang, Measurement and prediction of salt solubility in the presence of hydrate organic inhibitors, Spe Production & Operations 21(2) (2006) 182-187. [41] R. Masoudi, B. Tohidi, A. Danesh, A.C. Todd, R. Anderson, R.W. Burgass, J.H. Yang, Measurement and prediction of gas hydrate and hydrated salt equilibria in aqueous ethylene glycol and electrolyte solutions, Chem. Eng. Sci. 60(15) (2005) 4213-4224. [42] K.K. Ostergaard, R. Masoudi, B. Tohidi, A. Danesh, A.C. Todd, A general correlation for predicting the suppression of hydrate dissociation temperature in the presence of thermodynamic inhibitors, J. Pet. Sci. Eng. 48(1-2) (2005) 70-80. [43] R. Masoudi, B. Tohidi, Estimating the hydrate stability zone in the presence of salts and/or organic inhibitors using water partial pressure, J. Pet. Sci. Eng. 46(1-2) (2005) 23-36. [44] R. Masoudi, B. Tohidi, R. Anderson, R.W. Burgass, J.H. Yang, Experimental measurement and thermodynamic modelling of clathrate hydrate equilibria and salt solubility in aqueous ethylene glycol and electrolyte solutions, Fluid Phase Equilib. 219(2) (2004) 157-163. [45] R. Masoudi, B. Tohidi, A. Danesh, A.C. Todd, A new approach in modelling phase equilibria and gas solubility in electrolyte solutions and its applications to gas hydrates, Fluid Phase Equilib. 215(2) (2004) 163-174. [46] H. Kim, J. Park, Y. Seo, M. Ko, Hydrate risk management with aqueous ethylene glycol and electrolyte solutions in thermodynamically under-inhibition condition, Chem. Eng. Sci. 158(2017) 172-180. [47] A.M. Teixeira, L.d.O. Arinelli, J.L. de Medeiros, O.d.Q.F. Araujo, Recovery of thermodynamic hydrate inhibitors methanol, ethanol and MEG with supersonic separators in offshore natural gas processing, Journal of Natural Gas Science and Engineering 52(2018) 166-186. [48] K. Alef, C. Smith, S. Iglauer, R. Gubner, A. Barifcani, MEG on hydrate inhibition performance over multiple regeneration cycles, Fuel 222(2018) 638-647. [49] S.R. Xu, S.S. Fan, Y.H. Wang, X.M. Lang, Recovery of monoethylene glycol combined with kinetic hydrate inhibitor, Chem. Eng. Sci. 171(2017) 293-302. [50] J.P. Lederhos, J.P. Long, A. Sum, R.L. Christiansen, E.D. Sloan, Effective kinetic inhibitors for natural gas hydrates, Chem. Eng. Sci. 51(8) (1996) 1221-1229. [51] S.-P. Kang, J.-Y. Shin, J.-S. Lim, S. Lee, Experimental measurement of the induction time of natural gas hydrate and its prediction with polymeric kinetic inhibitor, Chem. Eng. Sci. 116(2014) 817-823. [52] R. O'Reilly, N.S. Ieong, P.C. Chua, M.A. Kelland, Crystal growth inhibition of tetrahydrofuran hydrate with poly(n-vinyl piperidone) and other poly(n-vinyl lactam) homopolymers, Chem. Eng. Sci. 66(24) (2011) 6555-6560. [53] R. O'Reilly, N.S. Ieong, P.C. Chua, M.A. Kelland, Missing poly(n-vinyl lactam) kinetic hydrate inhibitor:High-pressure kinetic hydrate inhibition of structure ii gas hydrates with poly(n-vinyl piperidone) and other poly(n-vinyl lactam) homopolymers, Energy Fuel 25(10) (2011) 4595-4599. [54] J.S. Zhang, C. Lo, A. Couzis, P. Somasundaran, J. Wu, J.W. Lee, Adsorption of kinetic inhibitors on clathrate hydrates, J. Phys. Chem. C 113(40) (2009) 17418-17420. [55] H. Zeng, H.L. Lu, E. Huva, V.K. Walker, J.A. Ripmeester, Differences in nucleator adsorption may explain distinct inhibition activities of two gas hydrate kinetic inhibitors, Chem. Eng. Sci. 63(15) (2008) 4026-4029. [56] K.S. Colle, C.A. Costello, R.H. Oelfke, L.D. Talley, J.M. Longo, E. Berluche, R.H. Oeltke, Inhibiting gas hydrate formation in wet gas stream|using specific poly:(acrylamides), Exxon Prodn Res Co. (1996). [57] C.A. Costello, E. Berluche, R.H. Oelfke, L.D. Talley, in:C.A. Costello (Ed.), Vinyl=maleimide copolymers|for inhibiting formation of clathrate hydrates in petroleum fluid containing water, Exxon Prodn Res Co., 1997 [58] M.A. Kelland, P.M. Rodger, T. Namba, M. Rodger, Inhibition of clathrate hydrate formation|in gas and oil pipelines, wells and equipment comprises a polymer of repeating structural unit e.G. N=alkyl(meth)acrylamide and or n,n=di:Alkyl (meth)acrylamide, Rf-Procom as; Nippon Shokubai Co Ltd., 1999 [59] P.C. Chua, M.A. Kelland, poly(n-vinyl azacyclooctanone):A more powerful structure ii kinetic hydrate inhibitor than poly(n-vinyl caprolactam), Energy Fuel 26(7) (2012) 4481-4485. [60] T. Yagasaki, M. Matsumoto, H. Tanaka, Adsorption mechanism of inhibitor and guest molecules on the surface of gas hydrates, J. Am. Chem. Soc. 137(37) (2015) 12079-12085. [61] N. Ziao, C. Laurence, J.-Y.L. Questel, Amino nitrogen and carbonyl oxygen in competitive situations:Which is the best hydrogen-bond acceptor site? Crystengcomm 4(2002) 326-335. [62] V.E. Ostrovskii, B.V. Tsurkova, E.A. Kadyshevich, B.V. Gostev, Comparison study of the acrylamide-water and polyacrylamide-water systems:Differential heat effects, kinetics, and mechanisms of drying and vapor-phase wetting, 200112680-12687. [63] P.C. Chua, M.A. Kelland, T. Hirano, H. Yamamoto, Kinetic hydrate inhibition of poly (n-isopropylacrylamide)s with different tacticities, Energy Fuel 26(8) (2012) 4961-4967. [64] P.C. Chua, M.A. Kelland, K. Ishitake, K. Satoh, M. Kamigaito, Y. Okamoto, Kinetic hydrate inhibition of poly(n-isopropylmethacrylamide)s with different tacticities, Energy Fuel 26(6) (2012) 3577-3585. [65] P.C. Chua, M.A. Kelland, H. Ajiro, F. Sugihara, M. Akashi, Poly(vinylalkanamide)s as kinetic hydrate inhibitors:Comparison of poly(n-vinylisobutyramide) with poly (n-isopropylacrylamide), Energy Fuel 27(1) (2013) 183-188. [66] J. Park, K.C. da Silveira, Q. Sheng, C.D. Wood, Y. Seo, Performance of poly(nisopropylacrylamide)-based kinetic hydrate inhibitors for nucleation and growth of natural gas hydrates, Energy Fuel 31(3) (2017) 2697-2704. [67] H. Roosta, A. Dashti, S.H. Mazloumi, F. Varaminian, Effects of chemical modification of pva by acrylamide, methacrylamide and acrylonitrile on the growth rate of gas hydrate in methane-propane-water system, J. Mol. Liq. 253(2018) 259-269. [68] H. Ajiro, Y. Takemoto, M. Akashi, P.C. Chua, M.A. Kelland, Study of the kinetic hydrate inhibitor performance of a series of poly(n-alkyl-n-vinylacetamide)s, Energy Fuel 24(2010) 6400-6410. [69] K.S. Colle, L.D. Talley, J.M. Longo, Inhibition of formation of clathrate hydrates in fluid having hydrate-forming constituents, comprises contacting fluid with inhibitor containing water-soluble polymer, Exxonmobil Upstream Res Co, 2005(Colle K S; Talley L D; Longo J M). [70] K.C. da Silveira, Q. Sheng, W. Tian, C. Fong, N. Maeda, E.F. Lucas, C.D. Wood, High throughput synthesis and characterization of PNIPAM-based kinetic hydrate inhibitors, Fuel 188(2017) 522-529. [71] N. Maeda, C. Fong, Q. Sheng, K.C. da Silveira, W. Tian, A. Seeber, W. Ganther, M.A. Kelland, M.F. Mady, C.D. Wood, High-throughput testing of kinetic hydrate inhibitors, Energy Fuel 30(7) (2016) 5432-5438. [72] C.A. Koh, R.E. Westacott, W. Zhang, K. Hirachand, J.L. Creek, A.K. Soper, Mechanisms of gas hydrate formation and inhibition, Fluid Phase Equilib. 194(2002) 143-151. [73] B.J. Anderson, J.W. Tester, G.P. Borghi, B.L. Trout, Properties of inhibitors of methane hydrate formation via molecular dynamics simulations, J. Am. Chem. Soc. 127(2005) 17852-17862. [74] J. Hu, S. Li, Y. Wang, X. Lang, Q. Li, S. Fan, Kinetic hydrate inhibitor performance of new copolymer poly(n-vinyl-2-pyrrolidone-co-2-vinyl pyridine)s with TBAB, J. Nat. Gas Chem. 21(2) (2012) 126-131. [75] F.T. Reyes, M.A. Kelland, First investigation of the kinetic hydrate inhibitor performance of polymers of alkylated n-vinyl pyrrolidones, Energy Fuel 27(7) (2013) 3730-3735. [76] F.T. Reyes, M.A. Kelland, Investigation of the kinetic hydrate inhibitor performance of a series of copolymers of n-vinyl azacyclooctanone on structure II gas hydrate, Energy Fuel 27(3) (2013) 1314-1320. [77] F.T. Reyes, E.L. Malins, C.R. Becer, M.A. Kelland, Non-amide kinetic hydrate inhibitors:Performance of a series of polymers of isopropenyloxazoline on structure II gas hydrates, Energy Fuel 27(6) (2013) 3154-3160. [78] M.F. Mady, M.A. Kelland, N,n-dimethylhydrazidoacrylamides. Part 2:High-cloudpoint kinetic hydrate inhibitor copolymers with n-vinylcaprolactam and effect of ph on performance, Energy Fuel 29(2) (2015) 678-685. [79] L.H.S. Ree, M.F. Mady, M.A. Kelland, N,n-dimethylhydrazidoacrylamides. Part 3:Improving kinetic hydrate inhibitor performance using polymers of n,ndimethylhydrazidomethacrylamide, Energy Fuel 29(12) (2015) 7923-7930. [80] Q. Zhang, X.D. Shen, X.B. Zhou, D.Q. Liang, Inhibition effect study of carboxylterminated polyvinyl caprolactam on methane hydrate formation, Energy Fuel 31(1) (2017) 839-846. [81] M.F. Mady, J.M. Bak, H.-I. Lee, M.A. Kelland, The first kinetic hydrate inhibition investigation on fluorinated polymers:Poly(fluoroalkylacrylamide)s, Chem. Eng. Sci. 119(2014) 230-235. [82] M.F. Mady, M.A. Kelland, N,n-dimethylhydrazidoacrylamides. Part 1:Copolymers with n-isopropylacrylamide as novel high-cloud-point kinetic hydrate inhibitors, Energy Fuel 28(9) (2014) 5714-5720. [83] J. Park, H. Kim, Q. Sheng, C.D. Wood, Y. Seo, Kinetic hydrate inhibition performance of poly(vinyl caprolactam) modified with corrosion inhibitor groups, Energy Fuel 31(9) (2017) 9363-9373. [84] Q. Zhang, R. Kawatani, H. Ajiro, M.A. Kelland, Optimizing the kinetic hydrate inhibition performance of n-alkyl-n-vinylamide copolymers, Energy Fuel 32(4) (2018) 4925-4931. [85] E. Abrahamsen, M.A. Kelland, Comparison of kinetic hydrate inhibitor performance on structure I and structure II hydrate-forming gases for a range of polymer classes, Energy Fuel 32(1) (2018) 342-351. [86] L.H.S. Ree, M.A. Kelland, Polymers of n-(pyrrolidin-1-yl)methacrylamide as high cloud point kinetic hydrate inhibitors, Energy Fuel 32(10) (2018) 10639-10648. [87] Q. Zhang, M.A. Kelland, Study of the kinetic hydrate inhibitor performance of poly (n-vinylcaprolactam) and poly(n-isopropylmethacrylamide) with varying end caps, Energy Fuel 32(9) (2018) 9211-9219. [88] M.A. Kelland, Q. Zhang, P.C. Chua, A study of natural proteins and partially hydrolyzed derivatives as green kinetic hydrate inhibitors, Energy Fuel 32(9) (2018) 9349-9357. [89] N. Maeda, M.A. Kelland, C.D. Wood, Ranking of kinetic hydrate inhibitors using a high pressure differential scanning calorimeter, Chem. Eng. Sci. 183(2018) 30-36. [90] N.A. Mohamed, M. Tariq, M. Atilhan, M. Khraisheh, D. Rooney, G. Garcia, S. Aparicio, Investigation of the performance of biocompatible gas hydrate inhibitors via combined experimental and DFT methods, J. Chem. Thermodyn. 111(2017) 7-19. [91] L.L. Ree, M.A. Kelland, D. Haddleton, F. Alsubaie, Comparison of the kinetic hydrate inhibition performance of block and statistical n-alkylacrylamide copolymers, Energy Fuel 31(2) (2017) 1355-1361. [92] E. Abrahamsen, I.M. Heyns, N. von Solms, R. Pfukwa, B. Klumperman, M.A. Kelland, First study of poly(3-methylene-2-pyrrolidone) as a kinetic hydrate inhibitor, Energy Fuel 31(12) (2017) 13572-13577. [93] H. Lin, T. Wolf, F.R. Wurm, M.A. Kelland, Poly(alkyl ethylene phosphonate)s:A new class of non-amide kinetic hydrate inhibitor polymers, Energy Fuel 31(4) (2017) 3843-3848. [94] W. Lee, J.Y. Shin, K.S. Kim, S.P. Kang, Synergetic effect of ionic liquids on the kinetic inhibition performance of poly(n-vinylcaprolactam) for natural gas hydrate formation, Energy Fuel 30(11) (2016) 9162-9169. [95] X.D. Shen, L.L. Shi, Z. Long, X.B. Zhou, D.Q. Liang, Experimental study on the kinetic effect of n-butyl-n-methylpyrrolidinium bromide on CO2 hydrate, J. Mol. Liq. 223(2016) 672-677. [96] M.F. Mady, A. Bagi, M.A. Kelland, Synthesis and evaluation of new bisphosphonates as inhibitors for oilfield carbonate and sulfate scale control, Energy Fuel 30(11) (2016) 9329-9338. [97] L.H.S. Ree, M.A. Kelland, P.J. Roth, R. Batchelor, First investigation of modified poly (2-vinyl-4,4-dimethylazlactone)s as kinetic hydrate inhibitors, Chem. Eng. Sci. 152(2016) 248-254. [98] R. Kawatani, K. Kan, M.A. Kelland, M. Akashi, H. Ajiro, Remarkable effect on thermosensitive behavior regarding alkylation at the amide position of poly(nvinylamide)s, Chem. Lett. 45(6) (2016) 589-591. [99] C.D. Magnusson, M.A. Kelland, Performance enhancement of n-vinylcaprolactambased kinetic hydrate inhibitors by synergism with alkylated guanidinium salts, Energy Fuel 30(6) (2016) 4725-4732. [100] X. Zhao, Z.S. Qiu, G.W. Zhou, W.A. Huang, Synergism of thermodynamic hydrate inhibitors on the performance of poly (vinyl pyrrolidone) in deepwater drilling fluid, Journal of Natural Gas Science and Engineering 23(2015) 47-54. [101] C.D. Magnusson, M.A. Kelland, Nonpolymeric kinetic hydrate inhibitors:Alkylated ethyleneamine oxides, Energy Fuel 29(10) (2015) 6347-6354. [102] F.T. Reyes, M.A. Kelland, L. Sun, J. Dong, Kinetic hydrate inhibitors:Structureactivity relationship studies on a series of branched poly(ethylene citramide)s with varying lipophilic groups, Energy Fuel 29(8) (2015) 4774-4782. [103] M.A. Kelland, E. Abrahamsen, H. Ajiro, M. Akashi, Kinetic hydrate inhibition with nalkyl-n-vinylformamide polymers:Comparison of polymers to n-propyl and isopropyl groups, Energy Fuel 29(8) (2015) 4941-4946. [104] F.T. Reyes, M.A. Kelland, N. Kumar, L. Jia, First investigation of the kinetic hydrate inhibition of a series of poly(beta-peptoid)s on structure II gas hydrate, including the comparison of block and random copolymers, Energy Fuel 29(2) (2015) 695-701. [105] C.D. Magnusson, D. Liu, E.Y.X. Chen, M.A. Kelland, Non-amide kinetic hydrate inhibitors:Investigation of the performance of a series of poly(vinylphosphonate) diesters, Energy Fuel 29(4) (2015) 2336-2341. [106] H.J. Huo, R.H. Wang, H.J. Ni, Y.L. Liu, An experimental study on the synergetic effects of kinetic and thermodynamic gas hydrate inhibitors, Pet. Sci. Technol. 32(16) (2014) 1940-1947. [107] E.F. May, R. Wu, M.A. Kelland, Z.M. Aman, K.A. Kozielski, P.G. Hartley, N. Maeda, Quantitative kinetic inhibitor comparisons and memory effect measurements from hydrate formation probability distributions, Chem. Eng. Sci. 107(2014) 1-12. [108] M.A. Kelland, N. Moi, M. Howarth, Breakthrough in synergists for kinetic hydrate inhibitor polymers, hexaalkylguanidinium salts:Tetrahydrofuran hydrate crystal growth inhibition and synergism with polyvinylcaprolactam, Energy Fuel 27(2) (2013) 711-716. [109] C. Nakarit, M.A. Kelland, D.J. Liu, E.Y.X. Chen, Cationic kinetic hydrate inhibitors and the effect on performance of incorporating cationic monomers into n-vinyl lactam copolymers, Chem. Eng. Sci. 102(2013) 424-431. [110] E.L. Malins, M.A. Kelland, C.R. Becer, Poly(2-isopropenyl-2-oxazoline)s as kinetic hydrate inhibitors, Abstr. Pap. Am. Chem. Soc. 246(2013) 1. [111] L. Del Villano, R. Kommedal, M.W.M. Fijten, U.S. Schubert, R. Hoogenboom, M.A. Kelland, Poly(2-oxazoline)s as kinetic gas hydrate inhibitors, Abstr. Pap. Am. Chem. Soc. 243(2012). [112] E. Abrahamsen, M.A. Kelland, Carbamate polymers as kinetic hydrate inhibitors, Energy Fuel 30(10) (2016) 8134-8140. [113] C.D. Magnusson, D.J. Liu, E.Y.X. Chen, M.A. Kelland, Non-amide kinetic hydrate inhibitors:Investigation of the performance of a series of poly(vinylphosphonate) diesters, Energy Fuel 29(4) (2015) 2336-2341. [114] Q. Zhang, I.M. Heyns, R. Pfukwa, B. Klumperman, M.A. Kelland, Improving the kinetic hydrate inhibition performance of 3-methylene-2-pyrrolidone polymers by n-alkylation, ring expansion, and copolymerization, Energy Fuel 32(12) (2018) 12337-12344. [115] M.A. Kelland, C. Magnusson, H. Lin, E. Abrahamsen, M.F. Mady, Acylamide and amine oxide derivatives of linear and hyperbranched polyethylenimine. Part 2:Comparison of gas kinetic hydrate inhibition performance, Energy Fuel 30(7) (2016) 5665-5671. [116] H. Sefidroodi, P.C. Chua, M.A. Kelland, THF hydrate crystal growth inhibition with small anionic organic compounds and their synergistic properties with the kinetic hydrate inhibitor poly(n-vinylcaprolactam), Chem. Eng. Sci. 66(10) (2011) 2050-2056. [117] P.C. Chua, M.A. Kelland, Tetra(iso-hexyl)ammonium bromide-The most powerful quaternary ammonium-based tetrahydrofuran crystal growth inhibitor and synergist with polyvinylcaprolactam kinetic gas hydrate inhibitor, Energy Fuel 26(2) (2012) 1160-1168. [118] M.A. Kelland, F.T. Reyes, K.W. Trovik, Tris(dialkylamino)cyclopropenium chlorides:Tetrahydrofuran hydrate crystal growth inhibition and synergism with polyvinylcaprolactam as gas hydrate kinetic inhibitor, Chem. Eng. Sci. 93(2013) 423-428. [119] M.F. Mady, M.A. Kelland, Fluorinated quaternary ammonium bromides:Studies on their tetrahydrofuran hydrate crystal growth inhibition and as synergists with polyvinylcaprolactam kinetic gas hydrate inhibitor, Energy Fuel 27(9) (2013) 5175-5181. [120] C.D. Magnusson, M.A. Kelland, Study on the synergistic properties of quaternary phosphonium bromide salts with n-vinylcaprolactam based kinetic hydrate inhibitor polymers, Energy Fuel 28(11) (2014) 6803-6810. [121] M.E. Mady, M.A. Kelland, Tris(tert-heptyl)-n-alkyl-1-ammonium bromidespowerful THF hydrate crystal growth inhibitors and their synergism with polyvinylcaprolactam kinetic gas hydrate inhibitor, Chem. Eng. Sci. 144(2016) 275-282. [122] M.F. Mady, M.A. Kelland, Synergism of tert-heptylated quaternary ammonium salts with poly(n-vinyl caprolactam) kinetic hydrate inhibitor in high-pressure and oilbased systems, Energy Fuel 32(4) (2018) 4841-4849. [123] M.A. Kelland, A.H. Kvaestad, E.L. Astad, Tetrahydrofuran hydrate crystal growth inhibition by trialkylamine oxides and synergism with the gas kinetic hydrate inhibitor poly(n-vinyl caprolactam), Energy Fuel 26(7) (2012) 4454-4464. [124] S.R. Xu, S.S. Fan, S.T. Fang, Y.H. Wang, X.M. Lang, Excellent synergy effect on preventing CH4 hydrate formation when glycine meets polyvinylcaprolactam, Fuel 206(2017) 19-26. [125] B. Tohidi, R. Anderson, H. Mozaffar, F. Tohidi, The return of kinetic hydrate inhibitors, Energy Fuel 29(12) (2015) 8254-8260. [126] Y. Yeh, R.E. Feeney, Antifreeze proteins:Structures and mechanisms of function, Chem. Rev. 96(2) (1996) 601-617. [127] H. Zeng, L.D. Wilson, V.K. Walker, J.A. Ripmeester, The inhibition of tetrahydrofuran clathrate-hydrate formation with antifreeze protein, Can. J. Phys. 81(1-2) (2003) 17-24. [128] H. Zeng, L.D. Wilson, V.K. Walker, J.A. Ripmeester, Effect of antifreeze proteins on the nucleaton, growth, and the memory effect during tetrahydrofuran clathrate hydrate formation, J. Am. Chem. Soc. 128(9) (2006) 2844-2850. [129] T. Sun, P.L. Davies, V.K. Walker, Structural basis for the inhibition of gas hydrates by alpha-helical antifreeze proteins, Biophys. J. 109(8) (2015) 1698-1705. [130] N. Daraboina, J. Ripmeester, V.K. Walker, P. Englezos, Natural gas hydrate formation and decomposition in the presence of kinetic inhibitors. 1. High pressure calorimetry, Energy Fuel 25(10) (2011) 4392-4397. [131] C.M. Perfeldt, P.C. Chua, N. Daraboina, D. Friis, E. Kristiansen, H. Ramlov, J.M. Woodley, M.A. Kelland, N. von Solms, Inhibition of gas hydrate nucleation and growth:Efficacy of an antifreeze protein from the longhorn beetle Rhagium mordax, Energy Fuel 28(6) (2014) 3666-3672. [132] S. Al-Adel, J.A.G. Dick, R. El-Ghafari, P. Servio, The effect of biological and polymeric inhibitors on methane gas hydrate growth kinetics, Fluid Phase Equilib. 267(1) (2008) 92-98. [133] H. Sharifi, V.K. Walker, J. Ripmeester, P. Englezos, Insights into the behavior of biological clathrate hydrate inhibitors in aqueous saline solutions, Cryst. Growth Des. 14(6) (2014) 2923-2930. [134] N. Daraboina, J. Ripmeester, V.K. Walker, P. Englezos, Natural gas hydrate formation and decomposition in the presence of kinetic inhibitors. 3. Structural and compositional changes, Energy Fuel 25(10) (2011) 4398-4404. [135] N. Daraboina, C.M. Perfeldt, N. von Solms, Testing antifreeze protein from the longhorn beetle Rhagium mordax as a kinetic gas hydrate inhibitor using a highpressure micro differential scanning calorimeter, Can. J. Chem. 93(9) (2015) 1025-1030. [136] L.U. Udegbunam, J.R. DuQuesnay, L. Osorio, V.K. Walker, J.G. Beltran, Phase equilibria, kinetics and morphology of methane hydrate inhibited by antifreeze proteins:Application of a novel 3-in-1 method, J. Chem. Thermodyn. 117(2018) 155-163. [137] H. Sharifi, J. Ripmeester, P. Englezos, Recalcitrance of gas hydrate crystals formed in the presence of kinetic hydrate inhibitors, Journal of Natural Gas Science and Engineering 35(2016) 1573-1578. [138] N. Daraboina, P. Linga, J. Ripmeester, V.K. Walker, P. Englezos, Natural gas hydrate formation and decomposition in the presence of kinetic inhibitors. 2. Stirred reactor experiments, Energy Fuel 25(10) (2011) 4384-4391. [139] M. Ota, Y.X. Qi, K. Murakami, M. Ferdows, Effects of additive solutions on gas hydrate formation, Proceedings of the International Conference on Power Engineering 2009(Icope-09), vol 1, 2009, pp. 305-310. [140] J.D. Lee, H.J. Wu, P. Englezos, Cationic starches as gas hydrate kinetic inhibitors, Chem. Eng. Sci. 62(23) (2007) 6548-6555. [141] H. Fakharian, H. Ganji, A.N. Far, M. Kameli, Potato starch as methane hydrate promoter, Fuel 94(1) (2012) 356-360. [142] H. Roosta, A. Dashti, S.H. Mazloumi, F. Varaminian, Inhibition and promotion effects of modified HECS and modified starches on the growth rate of hydrate in methane-propane-water system, J. Mol. Liq. 243(2017) 553-563. [143] Y.J. Xu, M.L. Yang, X.X. Yang, Chitosan as green kinetic inhibitors for gas hydrate formation, J. Nat. Gas Chem. 19(4) (2010) 431-435. [144] S.R. Xu, S.S. Fan, S.T. Fang, X.M. Lang, Y.H. Wang, J. Chen, Pectin as an extraordinary natural kinetic hydrate inhibitor, Sci. Rep. 6(2016). [145] P. Xu, X.M. Lang, S.S. Fan, Y.H. Wang, J. Chen, Molecular dynamics simulation of methane hydrate growth in the presence of the natural product pectin, J. Phys. Chem. C 120(10) (2016) 5392-5397. [146] C. Magnusson, E. Abrahamsen, M.A. Kelland, A. Cely, K. Kinnari, X. Li, K.M. Askvik, As green as it gets:An abundant kinetic hydrate inhibitor from nature, Energy Fuel 32(5) (2018) 5772-5778. [147] R.D. Rogers, K.R. Seddon, S. Volkov, Green industrial applications of ionic liquids, Nato science series II, Springer, Netherlands, 2002. [148] X.S. Li, Y.J. Liu, Z.Y. Zeng, Z.Y. Chen, G. Li, H.J. Wu, Equilibrium hydrate formation conditions for the mixtures of methane plus ionic liquids plus water, Journal of Chemical and Engineering Data 56(1) (2011) 119-123. [149] M. Tariq, D. Rooney, E. Othman, S. Aparicio, M. Atilhan, M. Khraisheh, Gas hydrate inhibition:A review of the role of ionic liquids, Ind. Eng. Chem. Res. 53(2014) 17855-17868. [150] C.K. Chu, S.T. Lin, Y.P. Chen, P.C. Chen, L.J. Chen, Chain length effect of ionic liquid 1- alkyl-3-methylimidazolium chloride on the phase equilibrium of methane hydrate, Fluid Phase Equilib. 413(2016) 57-64. [151] C.W. Xiao, H. Adidharma, Dual function inhibitors for methane hydrate, Chem. Eng. Sci. 64(7) (2009) 1522-1527. [152] C.W. Xiao, N. Wibisono, H. Adidharma, Dialkylimidazolium halide ionic liquids as dual function inhibitors for methane hydrate, Chem. Eng. Sci. 65(10) (2010) 3080-3087. [153] K.S. Kim, J.W. Kang, S.P. Kang, Tuning ionic liquids for hydrate inhibition, Chem. Commun. 47(22) (2011) 6341-6343. [154] L. Del Villano, M.A. Kelland, An investigation into the kinetic hydrate inhibitor properties of two imidazolium-based ionic liquids on structure II gas hydrate, Chem. Eng. Sci. 65(19) (2010) 5366-5372. [155] W. Lee, J.Y. Shin, K.S. Kim, S.P. Kang, Kinetic promotion and inhibition of methane hydrate formation by morpholinium ionic liquids with chloride and tetrafluoroborate anions, Energy Fuel 30(5) (2016) 3879-3885. [156] O. Nashed, K.M. Sabil, L. Ismail, A. Japper-Jaafar, B. Lal, Mean induction time and isothermal kinetic analysis of methane hydrate formation in water and imidazolium based ionic liquid solutions, J. Chem. Thermodyn. 117(2018) 147-154. [157] M.S. Khan, B. Lal, L.K. Keong, I. Ahmed, Tetramethyl ammonium chloride as dual functional inhibitor for methane and carbon dioxide hydrates, Fuel 236(2019) 251-263. [158] M.S. Khan, C.B. Bavoh, B. Partoon, B. Lal, M.A. Bustam, A.M. Shariff, Thermodynamic effect of ammonium based ionic liquids on CO2 hydrates phase boundary, J. Mol. Liq. 238(2017) 533-539. [159] M.S. Khan, B. Partoon, C.B. Bavoh, B. Lal, N.B. Mellon, Influence of tetramethylammonium hydroxide on methane and carbon dioxide gas hydrate phase equilibrium conditions, Fluid Phase Equilib. 440(2017) 1-8. [160] W. Lee, K.S. Kim, S.P. Kang, J.N. Kim, Synergetic performance of the mixture of poly (n-vinylcaprolactam) and a pyrrolidinium-based ionic liquid for kinetic hydrate inhibition in the presence of the mineral oil phase, Energy Fuel 32(4) (2018) 4932-4941. [161] M.F. Qureshi, M. Atilhan, T. Altamash, M. Tariq, M. Khraisheh, S. Aparicio, B. Tohidi, Gas hydrate prevention and flow assurance by using mixtures of ionic liquids and synergent compounds:Combined kinetics and thermodynamic approach, Energy Fuel 30(4) (2016) 3541-3548. [162] W. Lee, J.Y. Shin, J.H. Cha, K.S. Kim, S.P. Kang, Inhibition effect of ionic liquids and their mixtures with poly(n-vinylcaprolactam) on methane hydrate formation, J. Ind. Eng. Chem. 38(2016) 211-216. [163] S.P. Kang, T. Jung, J.W. Lee, Macroscopic and spectroscopic identifications of the synergetic inhibition of an ionic liquid on hydrate formations, Chem. Eng. Sci. 143(2016) 270-275. [164] T.Y. Makogon, E.D. Sloan, Mechanism of kinetic inhibition, Proc 4th Confer on Natural Gas Hydrate, 2002, (Japan:Yokohama). [165] J.L. Hutter, H.E. King, M.Y. Lin, Polymeric hydrate-inhibitor adsorption measured by neutron scattering, Macromolecules 33(7) (2000) 2670-2679. [166] H.E. King, J.L. Hutter, M.Y. Lin, T. Sun, Polymer conformations of gas-hydrate kinetic inhibitors:A small-angle neutron scattering study, J. Chem. Phys. 112(5) (2000) 2523-2532. [167] D. Kashchiev, A. Firoozabadi, Nucleation of gas hydrates, J. Cryst. Growth 243(3-4) (2002) 476-489. [168] D. Kashchiev, A. Firoozabadi, Driving force for crystallization of gas hydrates, J. Cryst. Growth 241(1-2) (2002) 220-230. [169] L. Del Villano, M.A. Kelland, G.M. Miyake, E.Y.X. Chen, Effect of polymer tacticity on the performance of poly(n,n-dialkylacrylamide)s as kinetic hydrate inhibitors, Energy Fuel 24(4) (2010) 2554-2562. [170] B.-Z. Peng, C.-Y. Sun, P. Liu, Y.-T. Liu, J. Chen, G.-J. Chen, Interfacial properties of methane/aqueous vc-713 solution under hydrate formation conditions, J. Colloid Interface Sci. 336(2) (2009) 738-742. [171] J. Yang, B. Tohidi, Characterization of inhibition mechanisms of kinetic hydrate inhibitors using ultrasonic test technique, Chem. Eng. Sci. 66(3) (2011) 278-283. [172] A. Perrin, O.M. Musa, J.W. Steed, The chemistry of low dosage clathrate hydrate inhibitors, Chem. Soc. Rev. 42(5) (2013) 1996-2015. [173] Y. Chen, Y. Wang, S. Fan, X. Lang, Molecular dynamic simulation of methane hydrate decomposition with polyvinyl alcohol at different concentrations, Acta Chim. Sin. 68(22) (2010) 2253-2258. [174] P. Xu, X. Lang, S. Fan, Y. Wang, J. Chen, Molecular dynamics simulation of methane hydrate growth in the presence of the natural product pectin, J. Phys. Chem. C 120(10) (2016) 5392-5397. [175] Z. Li, F. Jiang, H. Qin, B. Liu, C. Sun, G. Chen, Molecular dynamics method to simulate the process of hydrate growth in the presence/absence of KHIs, Chem. Eng. Sci. 164(2017) 307-312. [176] M.R. Talaghat, Enhancement of the performance of modified starch as a kinetic hydrate inhibitorin the presenceof polyoxidesfor simple gashydrateformation in a flow miniloop apparatus, Journal of Natural Gas Science and Engineering 18(2014) 7-12. [177] Y. Xu, M. Yang, X. Yang, Chitosan as green kinetic inhibitors for gas hydrate formation, J. Nat. Gas Chem. 19(4) (2010) 431-435. [178] B. Kvamme, Molecular dynamics simulations as a tool for the selection of candidates for kinetic hydrate inhibitors, in:J.S. Chung, et al., (Eds.), Proceedings of the eleventh, International Society Offshore& Polar Engineers, Cupertino, 2001, (Number of 517-527). [179] S. Xu, S. Fan, S. Fang, X. Lang, Y. Wang, J. Chen, Pectin as an extraordinary natural kinetic hydrate inhibitor, Sci. Rep. 6(2016) 23220. [180] T. Yagasaki, M. Matsumoto, H. Tanaka, Adsorption of kinetic hydrate inhibitors on growing surfaces:A molecular dynamics study, J. Phys. Chem. B 122(13) (2018) 3396-3406. [181] J. Xu, L. Li, J. Liu, X. Wang, Y. Yan, J. Zhang, The molecular mechanism of the inhibition effects of PVCaps on the growth of sI hydrate:An unstable adsorption mechanism, Phys. Chem. Chem. Phys. 20(12) (2018) 8326-8332. [182] R. Wu, K.A. Kozielski, P.G. Hartley, E.F. May, J. Boxall, N. Maeda, Methane-propane mixed gas hydrate film growth on the surface of water and Luvicap EG solutions, Energy Fuel 27(5) (2013) 2548-2554. [183] M. Ohtake, Y. Yamamoto, T. Kawamura, A. Wakisaka, W.F. de Souza, A.M.V. de Freitas, Clustering structure of aqueous solution of kinetic inhibitor of gas hydrates, J. Phys. Chem. B 109(35) (2005) 16879-16885. [184] S. Li, Y. Wang, X. Lang, S. Fan, Effects of cyclic structure inhibitors on the morphology and growth of tetrahydrofuran hydrate crystals, J. Cryst. Growth 377(2013) 101-106. [185] Q. Wang, C. Wang, S. Ma, P. Lu, J. Dong, Amphiphilic optimization enables polyaspartamides with effective kinetic inhibition of tetrahydrofuran hydrate formation:Structure-property relationships, ACS Sustain. Chem. Eng. 6(10) (2018) 13532-13542. [186] K.R. Khodaverdiloo, S.A. Rad, P. Naeiji, K. Peyvandi, F. Varaminian, Synergistic effects of nonylphenol ethoxylates and polyethylene glycols on performance of gas hydrate kinetic inhibitor, J. Mol. Liq. 216(2016) 268-274. [187] N. Choudhary, S. Das, S. Roy, R. Kumar, Effect of polyvinylpyrrolidone at methane hydrate-liquid water interface. Application in flow assurance and natural gas hydrate exploitation, Fuel 186(2016) 613-622. [188] S.D. Seo, H.-J. Paik, D.-H. Lim, J.D. Lee, Effects of poly(n-vinylcaprolactam) molecular weight and molecular weight distribution on methane hydrate formation, Energy Fuel 31(6) (2017) 6358-6363. [189] M.R. Talaghat, A.R. Bahmani, Performance improvement of various kinetic hydrate inhibitors using 2-butoxyethanol for simple gas hydrate formation in a flow miniloop apparatus, Theor. Found. Chem. Eng. 52(3) (2018) 438-446. [190] Y.V. Rojas, C.M. Phan, X. Lou, Dynamic surface tension studies on poly(nvinylcaprolactam/n-vinylpyrrolidone/n,n-dimethylaminoethyl methacrylate) at the air-liquid interface, Colloids Surf. A Physicochem. Eng. Asp. 355(1-3) (2010) 99-103. [191] Z.M. Aman, E.D. Sloan, A.K. Sum, C.A. Koh, Adhesion force interactions between cyclopentane hydrate and physically and chemically modified surfaces, Phys. Chem. Chem. Phys. 16(45) (2014) 25121-25128. [192] J.R. Hall, P.W. Baures, Inhibition of tetrahydrofuran hydrate formation in the presence of polyol-modified glass surfaces, Energy Fuel 31(8) (2017) 7816-7823. [193] Zhang, H., Fan, S., Wang, Y., and Lang, X., Investigation into relationship between hydrate particles and hydrophobic surface, in 9th International Conference 2017:Denver, US. 1793. [194] H. Zhou, Y. Tang, Z. Kang, D. Hu, B. Liang, Site application of ghi-1 natural gas hydrate kinetic inhibitor in natural gas pipelines at high sour gas fields (in Chinese), Nat. Gas Ind. 29(6) (2009) 107-109. [195] Y. Jiang, P. Zhang, H. Zhou, J. Yang, Hydrate forming origin and prevention measure of gathering and transportation system in Winter's Wenhuang gas field (in Chinese), Chemical Engineering of Oil & Gas 39(4) (2010) 335-338. [196] J. Hu, Y. Wang, X. Lang, J. Du, Q. Li, S. Fan, Synthesis and application of a novel combined kinetic hydrate inhibitor, Science China-Technological Sciences 54(12) (2011) 3289-3295. [197] Y. Hou, X. Jin, Y. Cheng, H. Teng, J. Huang, W. Hu, Experimental study on the influence of low dose hydrate inhibitor on the stability of oilfield wastewater and environment, Chemical Engineering of Oil & Gas 40(2011) 396-400. [198] W. Pang, H. Yao, Q. Li, S. Fan, Development of a low dosage kinetic hydrate inhibitor, Modern Chemical Industry 36(7) (2016) 87-90(in Chinese). [199] X. Hao, H. Jia, Y. Zhang, Z. Li, T. Ren, B. Liu, A new type of prevention of control of hydrate research, Petrochemical Industry Application 29(5) (2010) 31-33,65. [200] N. Zhou, L. Shi, P. Zhao, C. Xin, Y. Xu, Research on the field test for a new type of natural gas hydrate inhibitor, Guangzhou Chemical Industry 43(3) (2015) 158-160. [201] R. Zhang, X. Huang, Research and application of a new hydrate inhibitor z-6, Natural Gas and Oil 34(6) (2016) 31-34. [202] H. Yin, Evaluation of the inhibitory effect of complex inhibitor on high carbon dioxide gas hydrate (in Chinese), Chemical Engineering & Equipment 1(2015) 72-74. [203] C.P. Tang, X.X. Dai, J.W. Du, D.L. Li, X.Y. Zang, X.Y. Yang, D.Q. Liang, Kinetic studies of gas hydrate formation with low-dosage hydrate inhibitors, Sci. China Chem. 53(12) (2010) 2622-2627. |
[1] | Tatyana P. Adamova, Sergey S. Skiba, Andrey Yu. Manakov, Sergey Y. Misyura. Growth rate of CO2 hydrate film on water–oil and water–gaseous CO2 interface[J]. 中国化学工程学报, 2023, 56(4): 266-272. |
[2] | Peng-Fei Shen, Gang Li, Xiao-Sen Li, Bo Li, Jin-Ming Zhang. Application of fracturing technology to increase gas production in low-permeability hydrate reservoir: A numerical study[J]. 中国化学工程学报, 2021, 34(6): 267-277. |
[3] | Ekta Chaturvedi, Sukumar Laik, Ajay Mandal. A comprehensive review of the effect of different kinetic promoters on methane hydrate formation[J]. 中国化学工程学报, 2021, 32(4): 1-16. |
[4] | Qihui Hu, Xiaoyu Wang, Wuchang Wang, Yuxing Li, Shuai Liu. Growth and aggregation micromorphology of natural gas hydrate particles near gas-liquid interface under stirring condition[J]. 中国化学工程学报, 2021, 40(12): 65-77. |
[5] | Yanping Duan, Pengfei Wang, Wenge Yang, Xia Zhao, Hong Hao, Ruijie Wu, Jie Huang. Experimental and density functional theory computational evaluation of poly(N-vinyl caprolactam-co-butyl methacrylate) kinetic hydrate inhibitors[J]. 中国化学工程学报, 2021, 40(12): 237-244. |
[6] | Shuqi Fang, Xinyue Zhang, Jingyi Zhang, Chun Chang, Pan Li, Jing Bai. Evaluation on the natural gas hydrate formation process[J]. 中国化学工程学报, 2020, 28(3): 881-888. |
[7] | Vyacheslav G. Smirnov, Valeriy V. Dyrdin, Andrey Yu. Manakov, Zinfer R. Ismagilov. Decomposition of carbon dioxide hydrate in the samples of natural coal with different degrees of metamorphism[J]. 中国化学工程学报, 2020, 28(2): 492-501. |
[8] | Jingchun Feng, Longtao Sun, Yi Wang, Xiaosen Li. Advances of experimental study on gas production from synthetic hydrate reservoir in China[J]. 中国化学工程学报, 2019, 27(9): 2213-2225. |
[9] | Youhong Sun, Shuhui Jiang, Shengli Li, Guobiao Zhang, Wei Guo. Growth kinetics of hydrate formation from water–hydrocarbon system[J]. 中国化学工程学报, 2019, 27(9): 2164-2179. |
[10] | Xiaoya Zang, Lihua Wan, Deqing Liang. Investigation of the hydrate formation process in fine sediments by a binary CO2/N2 gas mixture[J]. 中国化学工程学报, 2019, 27(9): 2157-2163. |
[11] | Sheshan Bhimrao Meshram, Omkar S Kushwaha, Palle Ravinder Reddy, Gaurav Bhattacharjee, Rajnish Kumar. Investigation on the effect of oxalic acid, succinic acid and aspartic acid on the gas hydrate formation kinetics[J]. 中国化学工程学报, 2019, 27(9): 2148-2156. |
[12] | Lei Yang, Yulong Liu, Hanquan Zhang, Bo Xiao, Xianwei Guo, Rupeng Wei, Lei Xu, Lingjie Sun, Bin Yu, Shudong Leng, Yanghui Li. The status of exploitation techniques of natural gas hydrate[J]. 中国化学工程学报, 2019, 27(9): 2133-2147. |
[13] | Cuiping Tang, Deqing Liang. Inhibitory effects of novel green inhibitors on gas hydrate formation[J]. 中国化学工程学报, 2019, 27(9): 2107-2117. |
[14] | Zhiqiang Liu, Yunxiao Lu, Jiuhui Cheng, Qiang Han, Zunjing Hu, Linlin Wang. Geomechanics involved in gas hydrate recovery[J]. 中国化学工程学报, 2019, 27(9): 2099-2106. |
[15] | Wenxiang Zhang, Shuanshi Fan, Yanhong Wang, Xuemei Lang, Kai Guo, Jianbiao Chen. Evidence for pore-filling gas hydrates in the sediments through morphology observation[J]. 中国化学工程学报, 2019, 27(9): 2081-2088. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||