中国化学工程学报 ›› 2019, Vol. 27 ›› Issue (9): 2133-2147.DOI: 10.1016/j.cjche.2019.02.028
• Special Issue on Natural Gas Hydrate • 上一篇 下一篇
Lei Yang1, Yulong Liu1, Hanquan Zhang2, Bo Xiao2, Xianwei Guo1, Rupeng Wei1, Lei Xu1, Lingjie Sun1, Bin Yu3, Shudong Leng3, Yanghui Li1
收稿日期:
2018-11-20
修回日期:
2019-02-08
出版日期:
2019-09-28
发布日期:
2019-12-04
通讯作者:
Yanghui Li
基金资助:
Lei Yang1, Yulong Liu1, Hanquan Zhang2, Bo Xiao2, Xianwei Guo1, Rupeng Wei1, Lei Xu1, Lingjie Sun1, Bin Yu3, Shudong Leng3, Yanghui Li1
Received:
2018-11-20
Revised:
2019-02-08
Online:
2019-09-28
Published:
2019-12-04
Contact:
Yanghui Li
Supported by:
摘要: Natural gas hydrate (NGH) has been widely considered as an alternative form of energy with huge potential, due to its tremendous reserves, cleanness and high energy density. Several countries involving Japan, Canada, India and China have launched national projects on the exploration and exploitation of gas hydrate resources. At the beginning of this century, an early trial production of hydrate resources was carried out in Mallik permafrost region, Canada. Japan has conducted the first field test from marine hydrates in 2013, followed by another trial in 2017. China also made its first trial production from marine hydrate sediments in 2017. Yet the low production efficiency, ice/hydrate regeneration, and sand problems are still commonly encountered; the worldwide progress is far before commercialization. Up to now, many gas production techniques have been proposed, and a few of them have been adopted in the field production tests. Nevertheless, hardly any method appears really promising; each of them shows limitations at certain conditions. Therefore, further efforts should be made on the economic efficiency as well as sustainability and environmental impacts. In this paper, the investigations on NGH exploitation techniques are comprehensively reviewed, involving depressurization, thermal stimulation, chemical inhibitor injection, CO2-CH4 exchange, their combinations, and some novel techniques. The behavior of each method and its further potential in the field test are discussed. The advantages and limitations of laboratory studies are also analyzed. The work could give some guidance in the future formulation of exploitation scheme and evaluation of gas production behavior from hydrate reservoirs.
Lei Yang, Yulong Liu, Hanquan Zhang, Bo Xiao, Xianwei Guo, Rupeng Wei, Lei Xu, Lingjie Sun, Bin Yu, Shudong Leng, Yanghui Li. The status of exploitation techniques of natural gas hydrate[J]. 中国化学工程学报, 2019, 27(9): 2133-2147.
Lei Yang, Yulong Liu, Hanquan Zhang, Bo Xiao, Xianwei Guo, Rupeng Wei, Lei Xu, Lingjie Sun, Bin Yu, Shudong Leng, Yanghui Li. The status of exploitation techniques of natural gas hydrate[J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2133-2147.
[1] S. Kumar, H.T. Kwon, K.H. Choi, W. Lim, J.H. Cho, K. Tak, I. Moon, LNG:An ecofriendly cryogenic fuel for sustainable development, Appl. Energy 88(12) (2011) 4264-4273. [2] Annual energy outlook 2013 with projections to 2040, Office of Scientific & Technical Information Technical Reports, 2013. [3] J. Zhao, Y. Song, W.H. Lam, W. Liu, Y. Liu, Y. Zhang, D. Wang, Solar radiation transfer and performance analysis of an optimum photovoltaic/thermal system, Energy Convers. Manag. 52(2) (2011) 1343-1353. [4] J. Zhao, J. Wang, B. Wang, J. Liu, M. Yang, L. Jiang, Y. Zhang, Y. Song, Solar radiation transfer and performance analysis for a low concentrating photovoltaic/thermal system, Environ. Prog. Sustain. 35(1) (2016) 263-270. [5] J. Zhao, M. Ni, Z. Luo, T. Wang, Y. Zhang, C. Shou, T. Wu, K. Cen, Performance analysis of A-Si photovoltaic/thermal system using optimized direct absorption collector, J. Enhanc. Heat Transf. 19(2012) 123-134. [6] J. Zhao, M. Ni, C. Shou, Y. Zhang, W. Wei, J. Zhang, Z. Luo, K. Cen, Optimum optical properties of the working fluid in a direct absorption collector, J. Enhanc. Heat Transf. 18(2011) 239-247. [7] J. Dashwood, The Outlook for Energy:A View to 2040, Exxonmobil, 2013. [8] E.D. Sloan, Clathrate Hydrates of Natural Gas, CRC Press, 2007. [9] C. Sun, W. Li, X. Yang, F. Li, Q. Yuan, L. Mu, J. Chen, B. Liu, G. Chen, Progress in research of gas hydrate, Chin. J. Chem. Eng. 19(1) (2011) 151-162. [10] K.A. Kvenvolden, Gas hydrates-geological perspective and global change, Rev. Geophys. 31(2) (1993) 173-187. [11] K.A. Kvenvolden, G.D. Ginsburg, V.A. Soloviev, Worldwide distribution of subaquatic gas hydrates, Geo-Mar. Lett. 13(1) (1993) 32-40. [12] V. Gornitz, I. Fung, Potential distribution of methane hydrates in the world's oceans, Glob. Biogeochem. Cycles 8(3) (1994) 335-347. [13] D. Archer, B. Buffett, V. Brovkin, Ocean methane hydrates as a slow tipping point in the global carbon cycle, Proc. Natl. Acad. Sci. USA 106(49) (2009) 20596-20601. [14] E.B. Burwicz, L.H. RÜPke, K. Wallmann, Estimation of the global amount of submarine gas hydrates formed via microbial methane formation based on numerical reaction-transport modeling and a novel parameterization of Holocene sedimentation, Geochim. Cosmochim. Acta 75(16) (2011) 4562-4576. [15] P. Englezos, Clathrates hydrates, Ind. Eng. Chem. Res. 32(7) (1993) 1251-1274. [16] Makogon, Hydrates of Hydrocarbons, Alibris, UK, 1997. [17] S.Y. Lee, G.D. Holder, Methane hydrates potential as a future energy source, Fuel Process. Technol. 71(1) (2001) 181-186. [18] E.G. Hammerschmidt, Formation of gas hydrates in natural gas transmission lines, Ind.Eng.Chem 26(1934) 851-855. [19] Z.R. Chong, S.H.B. Yang, P. Babu, P. Linga, X.S. Li, Review of natural gas hydrates as an energy resource:Prospects and challenges, Appl. Energy 162(2016) 1633-1652. [20] J. Zhao, Y. Song, X.L. Lim, W.H. Lam, Opportunities and challenges of gas hydrate policies with consideration of environmental impacts, Renew. Sust. Energ. Rev. 70(2017) 875-885. [21] Z.G. Zhang, Y. Wang, L.F. Gao, Y. Zhang, C.S. Liu, Marine gas hydrates:Future energy or environmental killer? Energy Procedia 16(Part B) (2012) 933-938. [22] M. Numasawa, Objectives and Operation Overview of the JOGMEC/Nrcan/Aurora Mallik Gas Hydrate Production Test, 2008. [23] T.S. Collett, Results at Mallik highlight progress in gas hydrate energy resource research and development, Petrophysics 46(3) (2005) 237-243. [24] S.R. Dallimore, Summary and implications of the Mallik 2002 gas hydrate production research well program, Scientific Results from The Mallik Gas Hydrate Production Well Program, 2005. [25] K. Bybee, Natural gas technology/monetization:Overview of the Mallik gashydrate production research well, J. Pet. Technol. 56(4) (2004) 53-54. [26] M. Kurihara, A. Sato, K. Funatsu, H. Ouchi, Y. Masuda, H. Narita, T.S. Collett, Analysis of formation pressure test results in The Mount Elbert methane hydrate reservoir through numerical simulation, Mar. Pet. Geol. 28(2) (2011) 502-516. [27] H. Takahashi, Y. Tsuji, Offshore Japan-Conclusion-Japan drills, logs gas hydrate wells in The Nankai Trough, Oil Gas J. 103(34) (2005) 37-42. [28] A. Miyakawa, S. Saito, Y. Yamada, H. Tomaru, M. Kinoshita, T. Tsuji, Gas hydrate saturation at site C0002, IODP expeditions 314 and 315, In the Kumano Basin, Nankai Trough, Island Arc 23(2) (2014) 142-156. [29] Y. Kubo, Y. Mizuguchi, F. Inagaki, K. Yamamoto, A new hybrid pressure-coring system for the drilling vessel Chikyu, Sci. Drill. 17(17) (2014) 37-43. [30] J.C. Santamarina, S. Dai, J. Jang, M. Terzariol, Pressure core characterization tools for hydrate-bearing sediments, Sci. Drill. 14(2012) 44-48. [31] S. Nagakubo, A. Nao, Y. Itsuka, Environmental Impact Assessment Study on Japan's Methane Hydrate R&D Program, Fire in The Ice-Gas Hydrate Newsletter, 10(3), 2011. [32] L. Wang, F.U. Shaoying, J. Liang, J. Shang, J. Wang, A review on gas hydrate developments propped by worldwide national projects, Geol. China 44(3) (2017) 439-448. [33] W. Liu, Y. Li, X. Xu, Influence factors of methane hydrate formation from ice:Temperature, pressure and SDS surfactant, Chin. J. Chem. Eng. 27(2) (2019) 405-410. [34] Z. Yu, X.S. Li, Z.Y. Chen, Z.M. Xia, W. Yi, L. Gang, Experimental and modeling study on controlling factor of methane hydrate formation in silica gels, Appl. Energy 225(2018) 827-834. [35] Y. Zhang, X. Li, Y. Wang, Z. Chen, G. Li, Methane hydrate formation in marine sediment from south china sea with different water saturations, Energies 10(4) (2017) 561. [36] Y. Zhang, X.S. Li, Z.Y. Chen, G. Li, Y. Wang, Experimental investigation into gas hydrate formation in sediments with cooling method in three-dimensional simulator, Ind. Eng. Chem. Res. 53(37) (2014) 14208-14216. [37] G.J. Moridis, T.S. Collett, "Gas Production from Class 1 Hydrate Accumulations", Advances in The Study of Gas Hydrates, 2004. [38] Y.F. Makogon, Natural gas hydrates-A promising source of energy, J. Nat. Gas Sci. Eng. 2(1) (2010) 49-59. [39] Y.F. Makogon, S.A. Holditch, T.Y. Makogon, Natural gas-hydrates-A potential energy source for the 21st century, J. Pet. Sci. Eng. 56(1-3) (2007) 14-31. [40] Y.F. Makogon, J.C. Holste, S.A. Holditch, Natural Gas Hydrates and Global Change, International Society of Offshore and Polar Engineers, Montreal, Canada, 1998. [41] F. Franks, Water in crystalline hydrates aqueous solutions of simple nonelectrolytes, Springer, US, 1973 E2427. [42] H.P. Veluswamy, R. Kumar, P. Linga, Hydrogen storage in clathrate hydrates:Current state of the art and future directions, Appl. Energy 122(121) (2014) 112-132. [43] J. Zhao, L. Yang, Y. Liu, Y. Song, Microstructural characteristics of natural gas hydrates hosted in various sand sediments, Phys. Chem. Chem. Phys. 17(35) (2015) 22632-22641. [44] J. Zhao, C. Wang, M. Yang, W. Liu, K. Xu, Y. Liu, Y. Song, Existence of a memory effect between hydrates with different structures (I, II, And H), J. Nat. Gas Sci. Eng. 26(2015) 330-335. [45] M. Kurihara, H. Narita, Gas production from methane hydrate reservoirs, Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom, July 17-21, 2011. [46] G.J. Moridis, T.S. Collett, R. Boswell, M. Kurihara, M.T. Reagan, C. Koh, E.D. Sloan, Toward production from gas hydrates:Status, technology, and potential, J. Pet. Technol. 60(7) (2008) 82-84. [47] G. Moridis, Depressurization-induced gas production from Class 1 hydrate deposits, SPE Reserv. Eval. Eng. 10(5) (2006) 458-481. [48] G.J. Moridis, M.T. Reagan, Estimating the upper limit of gas production from Class 2 hydrate accumulations in The Permafrost:1. Concepts, system description, and the production base case, J. Pet. Sci. Eng. 76(3-4) (2011) 194-204. [49] M. Kurihara, H. Narita, Gas production from methane hydrate reservoirs, Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom, July 17-21, 2011. [50] T. Grover, S.A. Holditch, G. Moridis, Analysis of reservoir performance of Messoyakha gas hydrate field, Proceedings of The International Offshore and Polar Engineering Conference, 2008. [51] J.W. Huang, G. Bellefleur, B. Milkereit, Seismic modeling of multidimensional heterogeneity scales of Mallik gas hydrate reservoirs, Northwest Territories of Canada, J. Geophys. Res. Solid Earth 114(B7) (2009), B07306. [52] R. Matsumoto, Special issue on gas hydrate in Nankai Trough, Japan, Resour. Geol. 54(1) (2004) 1-2. [53] J. Henninges, E. Huenges, H. Burkhardt, In situ thermal conductivity of gas-hydratebearing sediments of The Mallik 5L-38 Well, J. Geophys. Res. Solid Earth 110(B11) (2005), B11206. [54] L.A. Stern, T.D. Lorenson, J.C. Pinkston, Gas hydrate characterization and grain-scale imaging of recovered cores from The Mount Elbert gas hydrate stratigraphic test well, Alaska North Slope, Mar. Pet. Geol. 28(2) (2011) 394-403. [55] R.B. Hunter, T.S. Collett, R. Boswell, B.J. Anderson, S.A. Digert, G. Pospisil, R. Baker, M. Weeks, Mount Elbert Gas hydrate stratigraphic test well, Alaska North Slope:Overview of scientific and technical program, Mar. Pet. Geol. 28(2) (2011) 295-310. [56] G.J. Moridis, T.S. Collett, M. Pooladidarvish, S. Hancock, C. Santamarina, R. Boswell, T. Kneafsey, J. Rutqvist, M. Kowalsky, M.T. Reagan, Challenges, uncertainties and issues facing gas production from gas hydrate deposits, SPE Reserv. Eval. Eng. 14(1) (2011) 76-112. [57] Council, N., Resources, C.O.E., Studies, E.L, Realizing the Energy Potential of Methane Hydrate for the United States:Committee on Assessment of the Department of Energy's Methane Hydrate Research and Development Program:Evaluating Methane Hydrate as a Future Energy Resource, National Academies Press, 2010. [58] R.M. Boswell, Investigation of gas hydrate-bearing sandstone reservoirs at the "Mount Elbert" stratigraphic test well, Milne point, Alaska, Office of Scientific & Technical Information Technical Reports, 2008. [59] H. Takahashi, Multi-well exploration program in 2004 for natural hydrate in the Nankai-trough offshore Japan, Offshore Technology Conference, 2005. [60] W.N. You, Z.H. Qi, Y.S. Xiong, L.J. Qiang, H.B. Wang, Preliminary discussion on Natural Gas Hydrate (NGH) reservoir system of Shenhu Area, north slope of South China Sea, Nat. Gas Ind. 27(9) (2007) 1-6. [61] Y. Song, L. Yang, J. Zhao, W. Liu, M. Yang, Y. Li, Y. Liu, Q. Li, The status of natural gas hydrate research in China:A review, Renew. Sust. Energ. Rev. 31(2) (2014) 778-791. [62] J. Zhao, T. Yu, Y. Song, D. Liu, W. Liu, Y. Liu, M. Yang, X. Ruan, Y. Li, Numerical simulation of gas production from hydrate deposits using a single vertical well by depressurization in the Qilian Mountain Permafrost, Qinghai-Tibet Plateau, China, Energy 52(4) (2013) 308-319. [63] T.S. Collett, M. Riedel, R. Boswell, J. Presley, P. Kumar, A. Sathe, A. Sethi, M.V. Lall, Indian National Gas Hydrate Program Expedition 01 Report, 2015. [64] B.J. Ryu, T.S. Collett, M. Riedel, G.Y. Kim, J.H. Chun, J.J. Bahk, J.Y. Lee, J.H. Kim, D.G. Yoo, Scientific results of the second gas hydrate drilling expedition in the Ulleung Basin (UBGH2), Mar. Pet. Geol. 47(11) (2013) 1-20. [65] J.J. Bahk, J.H. Kim, G.S. Kong, Y. Park, H. Lee, Y. Park, K.P. Park, Occurrence of nearseafloor gas hydrates and associated cold vents in The Ulleung Basin, East Sea, Geosci. J. 13(4) (2009) 371-385. [66] J. Wang, L. Zhang, J. Zhao, L. Ai, L. Yang, Variations in permeability along with interfacial tension in hydrate-bearing porous media, J. Nat. Gas Sci. Eng. 51(2018) 141-146. [67] Z. Wu, Y. Li, X. Sun, P. Wu, J. Zheng, Experimental study on the effect of methane hydrate decomposition on gas phase permeability of clayey sediments, Appl. Energy 230(2018) 1304-1310. [68] Z. Wu, Y. Li, S. Xiang, L. Man, R. Jia, Experimental study on the gas phase permeability of montmorillonite sediments in the presence of hydrates, Mar. Pet. Geol. 91(2018) 373-380. [69] P. Linga, C. Haligva, S.C. Nam, J.A. Ripmeester, P. Englezos, Recovery of methane from hydrate formed in a variable volume bed of silica sand particles, Energy Fuel 23(4) (2009) 5508-5516. [70] Z.Y. Chen, Q.P. Li, Z.Y. Yan, K.F. Yan, Z.Y. Zeng, X.S. Li, Phase equilibrium and dissociation enthalpies for cyclopentane + methane hydrates in NaCl aqueous solutions, J. Chem. Eng. Data 55(10) (2010) 4444-4449. [71] L.G. Tang, X.S. Li, Z.P. Feng, G. Li, S.S. Fan, Control mechanisms for gas hydrate production by depressurization in different scale hydrate reservoirs, Energy Fuel 21(1) (2007) 227-233. [72] B. Wang, H. Dong, Y. Liu, X. Lv, Y. Liu, J. Zhao, Y. Song, Evaluation of thermal stimulation on gas production from depressurized methane hydrate deposits, Appl. Energy 227(2018) 710-718. [73] Y. Song, L. Zhang, Q. Lv, M. Yang, Z. Ling, J. Zhao, Assessment of gas production from natural gas hydrate using depressurization, thermal stimulation and combined methods, RSC Adv. 6(53) (2016) 47357-47367. [74] J. Zhao, Z. Zhu, Y. Song, W. Liu, Y. Zhang, D. Wang, Analyzing the process of gas production for natural gas hydrate using depressurization, Appl. Energy 142(2015) 125-134. [75] Y. Song, C. Cheng, J. Zhao, Z. Zhu, W. Liu, M. Yang, K. Xue, Evaluation of gas production from methane hydrates using depressurization, thermal stimulation and combined methods, Appl. Energy 145(2015) 265-277. [76] J. Zhao, D. Liu, M. Yang, Y. Song, Analysis of heat transfer effects on gas production from methane hydrate by depressurization, Int. J. Heat Mass Transf. 77(4) (2014) 529-541. [77] X.S. Li, Y. Zhang, G. Li, Z.Y. Chen, H.J. Wu, Experimental investigation into the production behavior of methane hydrate in porous sediment by depressurization with a novel three-dimensional cubic hydrate simulator, Energy Fuel 25(10) (2011) 4497-4505. [78] X. Yang, C.Y. Sun, K.H. Su, Q. Yuan, Q.P. Li, G.J. Chen, A three-dimensional study on the formation and dissociation of methane hydrate in porous sediment by depressurization, Energy Convers. Manag. 56(2) (2012) 1-7. [79] K. Su, C. Sun, X. Yang, G. Chen, S. Fan, Experimental investigation of methane hydrate decomposition by depressurizing in porous media with 3-dimension device, J. Energy Chem. 19(3) (2010) 210-216. [80] J.Z.L.Y. Yulong Liu, Analyzing the process of depressurization-induced gas production from natural marine sediments, International Conference Of Applied Energy, 2018. [81] Y. Zhou, M.J. Castaldi, T.M. Yegulalp, Experimental investigation of methane gas production from methane hydrate, Ind. Eng. Chem. Res. 48(6) (2013) 3142-3149. [82] T.J. Phelps, D.J. Peters, S.L. Marshall, O.R. West, L. Liang, J.G. Blencoe, V. Alexiades, G.K. Jacobs, M.T. Naney, Jack L. Heck Jr., A new experimental facility for investigating the formation and properties of gas hydrates under simulated seafloor conditions, Rev. Sci. Instrum. 72(2) (2001) 1514-1521. [83] X.S. Li, W. Yi, L. Gang, Z. Yu, Experimental investigations into gas production behaviors from methane hydrate with different methods in a cubic hydrate simulator, Energy Fuel 26(2) (2012) 1124-1134. [84] X.S. Li, B. Yang, G. Li, B. Li, Y. Zhang, Z.Y. Chen, Experimental study on gas production from methane hydrate in porous media by huff and puff method in pilot-scale hydrate simulator, Fuel 94(1) (2012) 486-494. [85] J.M. Schicks, E. Spangenberg, R. Giese, M. Luzihelbing, M. Priegnitz, B. Beeskowstrauch, A counter-current heat-exchange reactor for the thermal stimulation of hydrate-bearing sediments, Energies 6(6) (2013) 3002-3016. [86] J.M. Schicks, E. Spangenberg, R. Giese, B. Steinhauer, J. Klump, M. Luzi, New approaches for the production of hydrocarbons from hydrate bearing sediments, Energies 4(1) (2011) 151-172. [87] Y. Konno, Y. Jin, K. Shinjou, J. Nagao, Experimental evaluation of the gas recovery factor ofmethanehydrate insandysediment, RSC Adv.4(93)(2014)51666-51675. [88] G. Moridis, M. Kowalsky, K. Pruess, TOUGH+HYDRATE v1.0 User's Manual, LBNL-161E, Lawrence Berkeley National Laboratory, Berkeley, CA, 2008. [89] K. Zhang, G.J. Moridis, Y.S. Wu, K. Pruess, A Domain Decomposition Approach for Large-Scale Simulations of Flow Processes in Hydrate-Bearing Geologic Media, Lawrence Berkeley National Laboratory, 2009. [90] M. Gaddipati, Code Comparison of Methane Hydrate Reservoir Simulators Using CMG STARS, (Dissertations & Theses) Gradworks, 2008. [91] B.J. Anderson, M. Kurihara, M.D. White, G.J. Moridis, S.J. Wilson, M. Pooladi-Darvish, M. Gaddipati, Y. Masuda, T.S. Collett, R.B. Hunter, Regional long-term production modeling from a single well test, Mount Elbert gas hydrate stratigraphic test well, Alaska North Slope, Mar. Pet. Geol. 28(2) (2011) 493-501. [92] Y. Konno, Y. Masuda, Y. Hariguchi, M. Kurihara, H. Ouchi, Key factors for depressurization-induced gas production from oceanic methane hydrates, Energy Fuel 24(3) (2010) 1736-1744. [93] M. Yamawaki, N. Takeyama, Y. Katsumura, Numerical study on permeability hysteresis during hydrate dissociation in hot water injection, Jpn. J. Appl. Phys. 47(2) (2008) 1104-1109. [94] K. Nazridoust, G. Ahmadi, Computational modeling of methane hydrate dissociation in a sandstone core, Chem. Eng. Sci. 62(22) (2007) 6155-6177. [95] T.S. Collett, Gas hydrates in The Messoyakha gas field of the West Siberian Basin-a re-examination of the geologic evidences, Int. J. Offshore Polar Eng. 8(1) (1998) 22-29. [96] Collett, Hydrates contain vast store of world gas resources, Oil Gas J. 96(19) (1998) 90-95. [97] J.F. Zhao, C.C. Ye, Y.C. Song, W.G. Liu, C.X. Cheng, Y. Liu, Y. Zhang, D.Y. Wang, X. Ruan, Numerical simulation and analysis of water phase effect on methane hydrate dissociation by depressurization, Ind. Eng. Chem. Res. 51(7) (2012) 3108-3118. [98] G.D. Holder, P.F. Angert, Simulation of gas production from a reservoir containing both gas hydrates and free natural gas, Front. Psychol. 3(42) (1982) 215. [99] P.L. Mcguire, Methane hydrate gas production by thermal stimulation, 4th Can. Permafrost Conf, 1981. [100] W.M. Deaton, Gas Hydrates and Their Relation to The Operation of Natural Gas Pipe Lines, U.S. Bur Mines Monograph, 1946. [101] M.J. Ross, L.S. Toczylkin, Hydrate dissociation pressures for methane or ethane in the presence of aqueous solutions of triethylene glycol, J. Chem. Eng. Data 37(4) (1992) 488-491. [102] A. Perrin, M.J. Goodwin, S. Callear, A.K. Soper, O.M. Musa, J.W. Steed, Structures of a Clathrate Hydrate Former, Inhibitor, and Synergist in Water, J. Phys. Chem. B 122(18) (2018) 4901-4912. [103] P. Englezos, P.R. Bishnoi, Prediction of gas hydrate formation conditions in aqueous electrolyte solutions, AIChE J. 34(10) (1988) 1718-1721. [104] K. Ohgaki, K. Takano, H. Sangawa, T. Matsubara, S. Nakano, Methane exploitation by carbon dioxide from gas hydrates-phase equilibria for CO2-CH4 mixed hydrate system, J. Chem. Eng. Jpn 29(3) (1996) 478-483. [105] K. Ohgaki, K. Takano, M. Moritoki, Exploitation of CH4 hydrates under the Nankai Trough in combination with CO2 storage, Kagaku Kōgaku Ronbunshū 20(1) (1994) 121-123. [106] J. Zhao, K. Xu, Y. Song, W. Liu, W.H. Lam, Y. Liu, K. Xue, Y. Zhu, X. Yu, Q. Li, A review on research on replacement of CH4 in natural gas hydrates by use of CO2, Energies 5(2012) 399-419. [107] G.J. Moridis, T.S. Collett, S.R. Dallimore, T. Satoh, S. Hancock, B. Weatherill, Numerical studies of gas production from several CH4 hydrate zones at The Mallik Site, Mackenzie Delta, Canada, J. Pet. Sci. Eng. 43(3-4) (2004) 219-238. [108] L.I. Gang, L. Tang, H. Chong, Z. Feng, S. Fan, Thermodynamic evaluation of hot brine stimulation for natural gas hydrate dissociation, J. Chem. Ind. Eng. 57(9) (2006) 2033-2038. [109] J. Zhao, L. Zhang, X. Chen, Y. Zhang, Y. Liu, Y. Song, Combined replacement and depressurization methane hydrate recovery method, Energy Explor. Exploit. 34(1) (2016) 129-139. [110] M.J. Castaldi, Y. Zhou, T.M. Yegulalp, Down-hole combustion method for gas production from methane hydrates, J. Pet. Sci. Eng. 56(1) (2007) 176-185. [111] F. Ning, G. Jiang, F. Tang, W. Xiang, X. Pan, Utilizing geothermal energy to exploit marine gas hydrate, Nat. Gas Ind. 26(12) (2006) 136-138. [112] Y.P. Handa, Compositions, enthalpies of dissociation, and heat capacities in the range 85 to 270 K for clathrate hydrates of methane, ethane, and propane, and enthalpy of dissociation of isobutane hydrate, as determined by a heat-flow calorimeter, J. Chem. Thermodyn. 18(10) (1986) 915-921. [113] B. Wang, Z. Fan, P. Wang, Y. Liu, J. Zhao, Y. Song, Analysis of depressurization mode on gas recovery from methane hydrate deposits and the concomitant ice generation, Appl. Energy 227(2018) 624-633. [114] M. Bellefleur, M. Riedel, J. Huang, T. Saeki, B. Milkereit, K. Ramachandran, T. Brent, Seismic Characterization of Gas Hydrate Accumulations in Permafrost Environment:Lessons Learned from Mallik, NWT, Canada, 2012. [115] T. Kanno, M. Takekoshi, X. Wang, S.S. Chee, M. Fukuhara, O. Osawa, K. Yamamoto, T. Fujii, T. Takayama, K. Suzuki, In-Situ Temperature Measurement of Gas Hydrate Dissociation During the World-First Offshore Production Test, 2014. [116] X. Yu, J. Zhao, W. Pang, G. Li, Y. Liu, Study Advancement for Multiphase Flow and Heat and Mass Transfer Characteristics for Gas Hydrate Decomposition in South China Sea Offshore Sediment, 2013. [117] G.J. Moridis, S. Silpngarmlert, M.T. Reagan, T. Collett, K. Zhang, Gas production from a cold, stratigraphically-bounded gas hydrate deposit at The Mount Elbert gas hydrate stratigraphic test well, Alaska North Slope:Implications of uncertainties, Mar. Pet. Geol. 28(2) (2011) 517-534. [118] J. Lee, S. Park, W. Sung, An experimental study on the productivity of dissociated gas from gas hydrate by depressurization scheme, Energy Convers. Manag. 51(12) (2010) 2510-2515. [119] Y. Gao, M. Yang, J.N. Zheng, B. Chen, Production characteristics of two class water-excess methane hydrate deposits during depressurization, Fuel 232(2018) 99-107. [120] B. Li, X.S. Li, G. Li, J.C. Feng, Y. Wang, Depressurization induced gas production from hydrate deposits with low gas saturation in a pilot-scale hydrate simulator, Appl. Energy 129(6) (2014) 274-286. [121] L. Zhan, Y. Wang, X.S. Li, Experimental study on characteristics of methane hydrate formation and dissociation in porous medium with different particle sizes using depressurization, Fuel 230(2018) 37-44. [122] Y.F. Makogon, R.Y. Omelchenko, Commercial gas production from messoyakha deposit in hydrate conditions, J. Nat. Gas Sci. Eng. 11(3) (2013) 1-6. [123] M.H. Yousif, H.H. Abass, M.S. Selim, E.D. Sloan, Experimental and theoretical investigation of methane-gas-hydrate dissociation in porous media, SPE Reserv. Eng. 6(1) (1991) 69-76. [124] M.H. Yousif, P.M. Li, M.S. Selim, E.D. Sloan, Depressurization of natural gas hydrates in Berea sandstone cores, J. Incl. Phenom. Mol. Recognit. Chem. 8(1-2) (1990) 71-88. [125] S. Circone, L.A. Stern, S.H. Kirby, J.C. Pinkston, W.B. Durham, Methane hydrate dissociation rates at 0.1 MPa and temperatures above 272 K, Ann. N. Y. Acad. Sci. 912(1) (2000) 544-555. [126] H.O. Kono, S. Narasimhan, F. Song, D.H. Smith, Synthesis of methane gas hydrate in porous sediments and its dissociation by depressurizing, Powder Technol. 122(2) (2002) 239-246. [127] H. Oyama, Y. Konno, Y. Masuda, H. Narita, Dependence of depressurizationinduced dissociation of methane hydrate bearing laboratory cores on heat transfer, Energy Fuel 23(10) (2009) 4995-5002. [128] J. Lee, Y. Lee, W. Joo, Y. Choi, An Experimental Study on the Gas Production from Gas Hydrate Reservoir by Depressurization Scheme, 2006. [129] C.X. Cheng, J.F. Zhao, M.J. Yang, W.G. Liu, B. Wang, Y.C. Song, Evaluation of gas production from methane hydrate sediments with heat transfer from overunderburden layers, Energy Fuel 29(2) (2015) 1028-1039. [130] H.C. Kim, P.R. Bishnoi, R.A. Heidemann, S. Rizvi, Kinetics of methane hydrate dissociation, Chem. Eng. Sci. 42(7) (1987) 1645-1653. [131] W.M. Sung, D.G. Huh, B.J. Ryu, H.S. Lee, Development and application of gas hydrate reservoir simulator based on depressurizing mechanism, Korean J. Chem. Eng. 17(3) (2000) 344-350. [132] C. Ji, G. Ahmadi, D.H. Smith, Natural gas production from hydrate decomposition by depressurization, Chem. Eng. Sci. 56(20) (2001) 5801-5814. [133] G.J. Moridis, M. Kowalsky, Gas Production from Unconfined Class 2 Oceanic Hydrate Accumulations, Economic geology of natural gas hydrate, Springer, Dordrecht, 2006249-266. [134] G. Moridis, M. Kowalsky, K. Pruess, Depressurization-induced gas production from Class-1 hydrate deposits, SPE Reserv. Eval. Eng. 10(05) (2007) 458-481. [135] H. Liang, Y. Song, Y. Chen, Numerical simulation for laboratory-scale methane hydrate dissociation by depressurization, Energy Convers. Manag. 51(10) (2010) 1883-1890. [136] K. Yan, X. Li, Z. Chen, B. Li, C. Xu, Molecular dynamics simulation of methane hydrate dissociation by depressurisation, Mol. Simul. 39(4) (2013) 251-260. [137] J. Zhao, B. Wang, L. Yang, C. Cheng, Y. Song, A novel apparatus for in situ measurement of thermal conductivity of hydrate-bearing sediments, Rev. Sci. Instrum. 86(8) (2015) 1. [138] J. Zhao, J. Wang, W. Liu, Y. Song, Analysis of heat transfer effects on gas production from methane hydrate by thermal stimulation, Int. J. Heat Mass Transf. 87(7) (2015) 145-150. [139] L. Yang, J. Zhao, W. Liu, M. Yang, Y. Song, Experimental study on the effective thermal conductivity of hydrate-bearing sediments, Energy 79(2015) 203-211. [140] J. Phirani, K.K. Mohanty, Warm water flooding of confined gas hydrate reservoirs, Chem. Eng. Sci. 64(10) (2009) 2361-2369. [141] J. Lee, Experimental study on the dissociation behavior and productivity of gas hydrate by brine injection scheme in porous rock, Energy Fuel 24(1) (2010) 456-463. [142] X. Yang, C.Y. Sun, Q. Yuan, P.C. Ma, G.J. Chen, Experimental study on gas production from methane hydrate-bearing sand by hot-water cyclic injection, Energy Fuel 24(11) (2010) 5912-5920. [143] X.S. Li, L.H. Wan, G. Li, Q.P. Li, Z.Y. Chen, K.F. Yan, Experimental investigation into the production behavior of methane hydrate in porous sediment with hot brine stimulation, Ind. Eng. Chem. Res. 47(23) (2008) 9-11. [144] G.C. Fitzgerald, M.J. Castaldi, Thermal stimulation based methane production from hydrate bearing quartz sediment, Ind. Eng. Chem. Res. 52(19) (2013) 6571-6581. [145] Y. Song, Y. Kuang, Z. Fan, Y. Zhao, J. Zhao, Influence of core scale permeability on gas production from methane hydrate by thermal stimulation, Int. J. Heat Mass Transf. 121(2018) 207-214. [146] J.C. Feng, Y. Wang, X.S. Li, Dissociation characteristics of water-saturated methane hydrate induced by huff and puff method, Appl. Energy 211(2018) 1171-1178. [147] Y. Wang, X.S. Li, G. Li, N.S. Huang, J.C. Feng, Experimental study on the hydrate dissociation in porous media by five-spot thermal huff and puff method, Fuel 117(1) (2014) 688-696. [148] G. Li, X.S. Li, B. Li, Y. Wang, Methane hydrate dissociation using inverted five-spot water flooding method in cubic hydrate simulator, Energy 64(64) (2014) 298-306. [149] W.F. Waite, L.A. Stern, S.H. Kirby, W.J. Winters, D.H. Mason, Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in Si methane hydrate, Geophys. J. R. Astron. Soc. 169(2) (2018) 767-774. [150] B. Wang, Z. Fan, P. Lv, J. Zhao, Y. Song, Measurement of effective thermal conductivity of hydrate-bearing sediments and evaluation of existing prediction models, Int. J. Heat Mass Transf. 110(2017) 142-150. [151] L. Yang, J. Zhao, B. Wang, W. Liu, M. Yang, Y. Song, Effective thermal conductivity of methane hydrate-bearing sediments:experiments and correlations, Fuel 179(2016) 87-96. [152] J.C. Santamarina, C. Ruppel, 26. The Impact of Hydrate Saturation on the Mechanical, Electrical, And Thermal Properties of Hydrate-Bearing Sand, Silts, And Clay, Society Of Exploration Geophysicists, 2011412. [153] D.D. Cortes, A.I. Martin, T.S. Yun, F.M. Francisca, J.C. Santamarina, C. Ruppel, Thermal conductivity of hydrate-bearing sediments, J. Geophys. Res. Solid Earth 114(B11) (2009), B11103. [154] J. Zhao, X. Guo, M. Sun, Y. Zhao, L. Yang, Y. Song, N2O hydrate formation in porous media:A potential method to mitigate N2O emissions, Chem. Eng. J. 361(2019) 12-20. [155] W.F. Waite, L.Y. Gilbert, W.J. Winters, D.H. Mason, Estimating thermal diffusivity and specific heat from needle probe thermal conductivity data, Rev. Sci. Instrum. 77(4) (2006) 510-516. [156] A. Duzi Huang, Shuanshi Fan, Thermal conductivity of methane hydrate formed from sodium dodecyl sulfate solution, J. Chem. Eng. Data 49(5) (2004) 1479-1482. [157] J.G. Cook, D.G. Leaist, An exploratory study of the thermal conductivity of methane hydrate, Geophys. Res. Lett. 10(5) (1983) 397-399. [158] F.P. Incropera, D.P.D. Witt, Fundamentals of heat and mass transfer, fourth edition Wiley, 1996139-162. [159] D.R. Lide, CRC handbook of chemistry and physics, Am J Med Sci 257(6) (1982) 423. [160] E. Chuvilin, B. Bukhanov, The effect of freezing and melting on the thermal conductivity of gas hydrate saturated sediments, International Conference on Gas Hydrates, Beijing, 2014. [161] L.Y. Min, L.X. Hu, X.U. Xing, Y.X. Qiu, S.X. Bin, Seafloor in-situ heat flow measurements in the deep-water areas of the northern slope, South China Sea, Chin. J. Geophys. 53(9) (2010) 2161-2170. [162] R. Hamaguchi, H. Yahashi, Y. Nishimura, M. Minemoto, Y. Matsukuma, M. Watabe, K. Arikawa, Fluid Dynamic Study on Recovery System of Methane Hydrate, The Society of Chemical Engineers, Japan, 2004572. [163] L.G. Tang, X. Rui, H. Chong, Z.P.F. And, S.S. Fan, Experimental investigation of production behavior of gas hydrate under thermal stimulation in unconsolidated sediment, Chin. J. Process. Eng. 19(6) (2006) 2402-2407. [164] M.R. Islam, A new recovery technique for gas production from alaskan gas hydrates, J. Pet. Sci. Eng. 11(4) (1991) 267-281. [165] D.L. Li, D.Q. Liang, S.S. Fan, X.S. Li, L.G. Tang, N.S. Huang, In situ hydrate dissociation using microwave heating:Preliminary study, Energy Convers. Manag. 49(8) (2008) 2207-2213. [166] J. Zhao, Z. Fan, B. Wang, H. Dong, Y. Liu, Y. Song, Simulation of microwave stimulation for the production of gas from methane hydrate sediment, Appl. Energy 168(2016) 25-37. [167] R.P. Leaute, B.S. Carey, Liquid Addition to Steam for Enhancing Recovery (LASER) of bitumen with CSS:Results from the first pilot cycle, J. Can. Pet. Technol. 46(9) (2007) 22-30. [168] E. Vittoratos, Flow regimes during cyclic steam stimulation at cold lake, J. Can. Pet. Technol. 30(1) (1991) 82-86. [169] S.G. Sayegh, B.B. Maini, Laboratory evaluation of the CO Huff-N-Puff process for heavy oil reservoirs, J. Can. Pet. Technol. 23(3) (1984) 29-36. [170] G. Li, X.S. Li, Y. Wang, Y. Zhang, Production behavior of methane hydrate in porous media using huff and puff method in a novel three-dimensional simulator, Energy 36(5) (2011) 3170-3178. [171] L.I. Ming-Chuan, Y.M. Chen, Experimental research on hot water flooding dissociation of natural gas hydrates in porous medium, J. East China Inst. Technol. 34(3) (2011) 266-270(in Chinese). [172] J. Zhao, C. Cheng, Y. Song, W. Liu, Y. Liu, K. Xue, Z. Zhu, Z. Yang, D. Wang, M. Yang, Heat transfer analysis of methane hydrate sediment dissociation in a closed reactor by a thermal method, Energies 5(5) (2012) 1292-1308. [173] V. Nair, S. Prasad, R. Kumar, J. Sangwai, Energy recovery from simulated clayey gas hydrate reservoir using depressurization by constant rate gas release, thermal stimulation and their combinations, Appl. Energy 225(2018) 755-768. [174] M. Pooladi-Darvish, Gas Production from Hydrate Reservoirs and Its Modeling, J. Pet. Technol. 56(6) (2004) 65-71. [175] G. Ahmadi, C. Ji, D.H. Smith, Numerical solution for natural gas production from methane hydrate dissociation, J. Pet. Sci. Eng. 41(4) (2004) 269-285. [176] G.J. Moridis, Numerical studies of gas production from methane hydrates, SPE Gas Technology Symposium, Society of Petroleum Engineers, 2002. [177] M. Burshears, T.J. Obrien, R.D. Malone, A multi-phase, multidimensional, variable composition simulation of gas production from a conventional gas reservoir in contact with hydrates, Spe Unconventional Gas Technology Symposium, 1986. [178] M.S. Selim, E.D. Sloan, Modeling of the dissociation of an in-situ hydrate, Soc. Pet. Eng. AIME, Pap.; (United States) 1985, p. Spe13597. [179] J.W. Ullerich, M.S. Selim, E.D. Sloan, Theory and measurement of hydrate dissociation, AIChE J. 33(5) (1987) 747-752.[180 A.K.M. Jamaluddin, N. Kalogerakis, P.R. Bishnoi, Modelling of decomposition of a synthetic core of methane gas hydrate by coupling intrinsic kinetics with heat transfer rates, Can. J. Chem. Eng. 67(6) (2010) 948-954. [181] M.B. Kowalsky, G.J. Moridis, Comparison of Kinetic and Equilibrium Reaction Models Insimulating The Behavior of Porous Media, 48(6), Lawrence Berkeley National Laboratory, 20061850-1863. [182] I.K. Gamwo, Y. Liu, Mathematical modeling and numerical simulation of methane production in a hydrate reservoir, Ind. Eng. Chem. Res. 49(11) (2010) 5231-5245. [183] G.J. Moridis, Analysis and Interpretation of The Thermal Test of Gas Hydrate Dissociation in the JAPEX/JNOC/GSC Et Al. Mallik 5L-38 Gas Hydrate Production Research Well, 2005. [184] G. Li, G.J. Moridis, K. Zhang, X.S. Li, The use of huff and puff method in a single horizontal well in gas production from marine gas hydrate deposits in The Shenhu Area of South China Sea, J. Pet. Sci. Eng. 77(1) (2010) 49-68. [185] G. Li, X.S. Li, K. Zhang, B. Li, Y. Zhang, Effects of impermeable boundaries on gas production from hydrate accumulations in the Shenhu Area of The South China Sea, Energies 6(8) (2013) 4078-4096.[186 J.C. Feng, X.S. Li, G. Li, B. Li, Z.Y. Chen, Numerical investigation of hydrate dissociation performance in The South China Sea with different horizontal well configurations, Energies 7(8) (2014) 4813-4834. [187] Z. Su, G.J. Moridis, K. Zhang, N. Wu, A huff-and-puff production of gas hydrate deposits in Shenhu area of South China Sea through a vertical well, J. Pet. Sci. Eng. 86-87(3) (2012) 54-61. [188] Q. Yuan, X.H. Wang, A. Dandekar, C.Y. Sun, Q.P. Li, Z.W. Ma, B. Liu, G.J. Chen, Replacement of methane from hydrates in porous sediments with CO2-in-water emulsions, Ind. Eng. Chem. Res. 53(31) (2014) 12476-12484. [189] A.H. Mohammadi, D. Richon, Phase equilibria of hydrogen sulfide and carbon dioxide simple hydrates in the presence of methanol, (methanol + NACl) and (ethylene glycol + NACl) aqueous solutions, J. Chem. Thermodyn. 44(1) (2012) 26-30. [190] A.H. Mohammadi, S. Laurens, D. Richon, Experimental study of methane hydrate phase equilibrium in the presence of polyethylene glycol-400 aqueous solution, J. Chem. Eng. Data 54(11) (2009) 3118-3120. [191] F. Dong, X. Zang, D. Li, S. Fan, D. Liang, Experimental investigation on propane hydrate dissociation by high concentration methanol and ethylene glycol solution injection, Energy Fuel 23(Sp. Iss. SI) (2009) 1563-1567. [192] A.H.M. And, D. Richon, Thermodynamic modeling of salt precipitation and gas hydrate inhibition effect of salt aqueous solution, Ind. Eng. Chem. Res. 46(14) (2007) 5074-5079. [193] T. Kawamura, Y. Sakamoto, M. Ohtake, Y. Yamamoto, A. Takeshi Komai, H. Haneda, J.H. Yoon, Dissociation behavior of pellet-shaped methane hydrate in ethylene glycol and silicone oil. Part 1:dissociation above ice point, Ind. Eng. Chem. Res. 45(1) (2006) 360-364. [194] P.S. And, P. Englezos, Incipient equilibrium propane hydrate formation conditions in aqueous triethylene glycol solutions, J. Chem. Eng. Data 42(4) (1997) 800-801. [195] V.R. Avula, R.L. Gardas, J.S. Sangwai, An improved model for the phase equilibrium of methane hydrate inhibition in the presence of ionic liquids, Fluid Phase Equilib. 382(2014) 187-196. [196] J. Javanmardi, S. Babaee, A. Eslamimanesh, A.H. Mohammadi, Experimental measurements and predictions of gas hydrate dissociation conditions in the presence of methanol and ethane-1,2-diol aqueous solutions, J. Chem. Eng. Data 57(5) (2013) 1474-1479. [197] A.H. Mohammadi, W. Afzal, D. Richon, Experimental data and predictions of dissociation conditions for ethane and propane simple hydrates in the presence of methanol, ethylene glycol, and triethylene glycol aqueous solutions, J. Chem. Eng. Data 53(21) (2013) 683-686. [198] S. Babaee, H. Hashemi, J. Javanmardi, A. Eslamimanesh, A.H. Mohammadi, Thermodynamic model for prediction of phase equilibria of clathrate hydrates of hydrogen with different alkanes, alkenes, alkynes, cycloalkanes or cycloalkene, Fluid Phase Equilib. 336(51) (2012) 71-78. [199] A. Eslamimanesh, A.H. Mohammadi, D. Richon, P. Naidoo, D. Ramjugernath, Application of gas hydrate formation in separation processes:A review of experimental studies, J. Chem. Thermodyn. 46(26) (2012) 62-71. [200] A.H.Mohammadi,D.Richon,Gashydratephaseequilibriuminmethane+ethylene glycol, diethyleneglycol, or triethyleneglycol + water system, J. Chem. Eng. Data 56(12) (2012) 8865-8869. [201] M. Shimada, J. Shimada, T. Sugahara, K. Tsunashima, Phase equilibrium relations for tetra-n-butylphosphonium acetate semiclathrate hydrate systems in the presence of methane, carbon dioxide, nitrogen, or ethane, Fluid Phase Equilib. 488(2019) 48-53. [202] A.H. Mohammadi, I. Kraouti, D. Richon, Experimental data and predictions of dissociation conditions for methane, ethane, propane, and carbon dioxide simple hydrates in the presence of glycerol aqueous solutions, Ind. Eng. Chem. Res. 47(21) (2010) 135-143. [203] A.H. Mohammadi, D. Richon, Gas hydrate phase equilibrium in the presence of ethylene glycol or methanol aqueous solution, Ind. Eng. Chem. Res. 49(18) (2010) 8865-8869. [204] R. Nakane, E. Gima, R. Ohmura, I. Senaha, K. Yasuda, Phase equilibrium condition measurements in carbon dioxide hydrate forming system coexisting with sodium chloride aqueous solutions, J. Chem. Thermodyn. 130(2019) 192-197. [205] A.H. Mohammadi, W. Afzal, D. Richon, Experimental data and predictions of dissociation conditions for ethane and propane simple hydrates in the presence of distilled water and methane, ethane, propane, and carbon dioxide simple hydrates in the presence of ethanol aqueous solutions, J. Chem. Eng. Data 53(1) (2008) 73-76. [206] A.H. Mohammadi, W. Afzal, D. Richon, Gas hydrates of methane, ethane, propane, and carbon dioxide in the presence of single Nacl, KCl, and CaCl2 aqueous solutions:Experimental measurements and predictions of dissociation conditions, J. Chem. Thermodyn. 40(12) (2008) 1693-1697. [207] L. Gang, X.S. Li, L.G. Tang, Z. Yu, Experimental investigation of production behavior of methane hydrate under ethylene glycol injection in unconsolidated sediment, Energy Fuel 21(6) (2007) 180-186. [208] W. Afzal, A.H.M. And, D. Richon, Experimental measurements and predictions of dissociation conditions for carbon dioxide and methane hydrates in the presence of triethylene glycol aqueous solutions, J. Chem. Eng. Data 52(5) (2007) 2053-2055. [209] A.H.M. And, D. Richon, Use of boiling point elevation data of aqueous solutions for estimating hydrate stability zone, Ind. Eng. Chem. Res. 46(3) (2007) 987-989. [210] T. Kawamura, Y. Sakamoto, M. Ohtake, Y. Yamamoto, H. Haneda, J.H. Yoon, T. Komai, Dissociation behavior of hydrate core sample using thermodynamic inhibitor, Int. J. Offshore Polar Eng. 16(1) (2006) 5-9. [211] H. Najibi, A.H. Mohammadi, B. Tohidi, Estimating the hydrate safety margin in the presence of salt and/or organic inhibitor using freezing point depression data of aqueous solutions, Ind. Eng. Chem. Res. 45(12) (2006) 189-222. [212] A.H.M. And, D. Richon, Estimating the hydrate safety margin using surface tension data of salt aqueous solution, Ind. Eng. Chem. Res. 45(24) (2006) 8154-8157. [213] N. Maeda, M.A. Kelland, C.D. Wood, Ranking of kinetic hydrate inhibitors using a high pressure differential scanning calorimeter, Chem. Eng. Sci. 183(2018) 30-36. [214] P.R. Bishnoi, P.D. Dholabhai, Equilibrium conditions for hydrate formation for a ternary mixture of methane, propane and carbon dioxide, and a natural gas mixture in the presence of electrolytes and methanol, Fluid Phase Equilib. S 158-160(5) (1999) 821-827. [215] A. Demirbas, Processes for methane production from gas hydrates, Springer, London, 2010161-181. [216] F. Tohidi, R. Anderson, B. Tohidi, Evaluation of a Novel Water-Immiscible Kinetic Hydrate Inhibitor Formulation, Energy Fuel 32(6) (2018) 6518-6523. [217] R. Dumlupınar, T. Çakmak, Kocaçalışkan, "The Effects of CaCl2 And KCL Concentrations on Chilling Resistance of Bean (Phaseolus vulgaris L.)", 2011. [218] P.D. Menten, W.R. Parrish, E.D. Sloan, Effect of inhibitors on hydrate formation, Ind. Eng. Chem. Process Des. Dev. 20(2) (1981) 399-401. [219] S. Dai, J.C. Santamarina, W.F. Waite, T.J. Kneafsey, Hydrate morphology:Physical properties of sands with patchy hydrate saturation, J. Geophys. Res. Solid Earth 117(B11) (2012) 1-12. [220] Y. Jin, S. Li, D. Yang, X. Jiang, Determination of dissociation front and operational optimization for hydrate development by combining depressurization and hot brine stimulation, J. Nat. Gas Sci. Eng. 50(2018) 215-230. [221] L. Yi, D. Liang, Decomposition mechanism of methane hydrate in brine solution by molecular dynamics simulation, 8th International Conference on Gas Hydrate, Beijing, 2014. [222] D.L.V. Katz, Handbook of Natural Gas Engineering, Mcgraw-Hill 1959. [223] J.H. Sira, S.L. Patil, V.A. Kamath, Study of Hydrate Dissociation by Methanol And Glycol Injection, Soc. Pet. Eng. (1990). [224] S. Fan, Y. Zhang, G. Tian, A. Deqing Liang, D. Li, Natural gas hydrate dissociation by presence of ethylene glycol, Energy Fuel 20(1) (2006) 419-425. [225] Ebinuma T. Method for dumping and disposing of carbon dioxide gas and apparatus therefor:U.S. Patent 5,261,490. 1993-11-16. [226] J. Zhao, L. Zhang, X. Chen, F. Zhe, L. Yu, Y. Song, Experimental study of conditions for methane hydrate productivity by the CO2 swap method, Energy Fuel 29(11) (2015) 556814945. [227] M. Hyodo, Y. Li, J. Yoneda, Y. Nakata, N. Yoshimoto, A. Nishimura, Effects of dissociation on the shear strength and deformation behavior of methane hydrate-bearing sediments, Mar. Pet. Geol. 51(2) (2014) 52-62. [228] Y. Li, Y. Song, F. Yu, W. Liu, J. Zhao, Experimental study on mechanical properties of gas hydrate-bearing sediments using kaolin clay, China Ocean Eng. 25(1) (2011) 113-122. [229] D.Y. Koh, H. Kang, D.O. Kim, J. Park, M. Cha, H. Lee, Recovery of methane from gas hydrates intercalated within natural sediments using CO2 and a CO2/N2 gas mixture, Chemsuschem 5(8) (2012) 1443-1448. [230] N. Goel, In situ methane hydrate dissociation with carbon dioxide sequestration:Current knowledge and issues, J. Pet. Sci. Eng. 51(3-4) (2006) 169-184. [231] M.Y. Eric, P.T.C. And, A.C. Ariel, Determination of the gibbs free energy of gas replacement in SI clathrate hydrates by molecular simulation, J. Phys. Chem. A 106(34) (2002) 7982-7987. [232] S. Lee, Y. Lee, J. Lee, H. Lee, Y. Seo, Experimental verification of methane-carbon dioxide replacement in natural gas hydrates using a differential scanning calorimeter, Environ. Sci. Technol. 47(22) (2013) 13184-13190. [233] Y. Qi, M. Ota, Z. Hua, Molecular dynamics simulation of replacement of CH4 in hydrate with CO2, Energy Convers. Manag. 52(7) (2011) 2682-2687. [234] N. Bigalke, C. Deusner, E. Kossel, J.M. Schicks, E. Spangenberg, M. Priegnitz, K.U. Heeschen, S. Abendroth, J. Thaler, M. Haeckel, Hydraulic and mechanical effects from gas hydrate conversion and secondary gas hydrate formation during injection of CO2 into CH4-hydrate-bearing sediments, AGU Fall Meeting Abstracts, 2014. [235] C. Deusner, N. Bigalke, E. Kossel, M. Haeckel, Gas production via injection of CO2, Helmholtz-CAS Joint Research Group Kick-Off Meeting and Workshop, 2014. [236] O. Ors, C. Sinayuc, An experimental study on the CO2-CH4 swap process between gaseous CO2 and CH4 hydrate in porous media, J. Pet. Sci. Eng. 119(3) (2014) 156-162. [237] A. Ishimatsu, Y. Kojima, M. Hayashi, Effects of CO2 ocean sequestration on deep-sea animals, IEEE Kobe-Techno-Ocean'08-Voyage toward the Future, OTO'082008, pp. 1-4. [238] K. Ohgaki, Y. Inoue, Proposal for Gas Storage on the Bottom of the Ocean, Using Gas Hydrates, 1994. [239] A. Falenty, J. Qin, A.N. Salamatin, L. Yang, W.F. Kuhs, Fluid Composition and Kinetics of the in Situ Replacement in CH4-CO2 Hydrate System, J. Phys. Chem. C 120(48) (2016) 27159-27172. [240] L. Zhang, L. Yang, J. Wang, J. Zhao, H. Dong, M. Yang, Y. Liu, Y. Song, Enhanced CH4 recovery and CO2 storage via thermal stimulation in the CH4/CO2 replacement of methane hydrate, Chem. Eng. J. 308(2017) 40-49. [241] T. Uchida, S. Takeya, T. Ebinuma, Replacing Methane with CO in Clathrate Hydrate:Observation Using Raman Spectroscopy2, 2001. [242] H. Lee, Y. Seo, Y.T. Seo, I.L. Moudrakovski, J.A. Ripmeester, Recovering methane from solid methane hydrate with carbon dioxide, Angew. Chem. Int. Ed. 42(41) (2003) 5048-5051. [243] Z.Z. Li, X.Q. Guo, J.B. Wang, L.Y. Yang, Experimental studies on CH4 recovery from hydrate using CO2 in different systems, Nat. Gas Ind. 28(5) (2008) 129-132. [244] Q. Yuan, C.Y. Sun, X. Yang, P.C. Ma, Z.W. Ma, B. Liu, Q.L. Ma, L.Y. Yang, G.J. Chen, Recovery of methane from hydrate reservoir with gaseous carbon dioxide using a three-dimensional middle-size reactor, Energy 40(1) (2012) 47-58. [245] S. Hirohama, Y. Shimoyama, A. Wakabayashi, S. Tatsuta, N. Nishida, Conversion of CH4-hydrate to CO2-hydrate in liquid CO2, J. Chem. Eng. Jpn 29(6) (1996) 1014-1020. [246] Y. Zhang, Z.Y. Liu, W.G. Liu, J.F. Zhao, M.J. Yang, Y. Liu, D.Y. Wang, Y.C. Song, Measurement and modeling of the densities for CO2+ dodecane system from 313.55 K To 353.55 K and pressures up to 18 MPa, J. Chem. Eng. Data 59(11) (2014) 3668-3676. [247] M. Ota, K. Morohashi, Y. Abe, M. Watanabe, R. Smithjr, H. Inomata, Replacement of CH4 in the hydrate by use of liquid CO2, Energy Convers. Manag. 46(11-12) (2005) 1680-1691. [248] Q. Yuan, C.Y. Sun, B. Liu, X. Wang, Z.W. Ma, Q.L. Ma, L.Y. Yang, G.J. Chen, Q.P. Li, S. Li, Methane recovery from natural gas hydrate in porous sediment using pressurized liquid CO2, Energy Convers. Manag. 67(2) (2013) 257-264. [249] Y. Zhang, L. Xiong, X. Li, Z. Chen, C. Xu, Replacement of CH4 in hydrate in porous sediments with liquid CO2 injection, Chem. Eng. Technol. 37(12) (2015) 2022-2029. [250] B.P. Mcgrail, T. Zhu, R.B. Hunter, M.D. White, S.L. Patil, A.S. Kulkarni, A new method for enhanced production of gas hydrates with CO2, Gas hydrates:energy resource potential and associated geologic hazards, 200412-16. [251] X. Zhou, S. Fan, D. Liang, J. Du, Replacement of methane from quartz sand-bearing hydrate with carbon dioxide-in-water emulsion, Energy Fuel 22(3) (2008) 1759-1764. [252] X. Zhou, S. Fan, D. Liang, J. Du, Determination of appropriate condition on replacing methane from hydrate with carbon dioxide, Energy Convers. Manag. 49(8) (2008) 2124-2129. [253] W. Zhang, Z. Wang, W.Q. Li, W.Y. Li, D.W. He, Research Progressin the enhanced replacing methane out of gas hydrate by carbon dioxide emulsion, Nat. Gas Chem. Ind. 34(1) (2009) 59-63(in Chinese). [254] S.J. Dunnett, C.F. Clement, Methane production from gas hydrate deposits through injection of supercritical CO2, Energies 5(7) (2012) 2112-2140. [255] E. Kossel, C. Deusner, N. Bigalke, M. Haeckel, Methane recovery from gas hydrates by injection of supercritical CO2, Fiery Ice from The Seas International Workshop on Methane Hydrate Research & Development, 2012. [256] S.P. Kang, J.W. Lee, Kinetic behaviors of CO2 hydrates in porous media and effect of kinetic promoter on the formation kinetics, Chem. Eng. Sci. 65(5) (2010) 1840-1845. [257] M. Liang, G. Chen, C. Sun, L. Yan, J. Liu, Q. Ma, Experimental and modeling study on decomposition kinetics of methane hydrates in different media, J. Phys. Chem. B 109(40) (2005) 19034-19041. [258] T. Satoshi, H. Takeo, U. Tsutomu, In situ observation of CO2 hydrate by X-ray diffraction, Ann. N. Y. Acad. Sci. 912(1) (2010) 973-982. [259] S. Takeya, T. Uchida, K. Gouhara, T. Hondoh, In-situ observations of gas hydrates by X-ray diffraction, J. Jpn. Assoc. Cryst. Growth 24(1997) 235.[260 L. Yang, A. Falenty, M. Chaouachi, D. HaberthÜR, W.F. Kuhs, Synchrotron X-ray computed microtomography study on gas hydrate decomposition in a sedimentary matrix, Geochem. Geophys. Geosyst. 17(9) (2016) 3717-3732. [261] J. Wang, J. Zhao, Y. Zhang, D. Wang, Y. Li, Y. Song, Analysis of the effect of particle size on permeability in hydrate-bearing porous media using pore network models combined with CT, Fuel 163(2016) 34-40. [262] L. Yang, J. Zhao, W. Liu, Y. Li, M. Yang, Y. Song, Microstructure observations of natural gas hydrate occurrence in porous media using microfocus X-ray computed tomography, Energy Fuel 29(8) (2015) 4835-4841. [263] L. Yu, L. Jiang, N. Zhu, Y. Zhao, Z. Yi, D. Wang, M. Yang, J. Zhao, Y. Song, MRI investigation of water-oil two phase flow in straight capillary, bifurcate channel and monolayered glass bead pack, Magn. Reson. Imaging 33(7) (2015) 918-926. [264] J.Q. Wang, J.F. Zhao, M.J. Yang, Y.H. Li, W.G. Liu, Y.C. Song, Permeability of laboratory-formed porous media containing methane hydrate:Observations using X-ray computed tomography and simulations with pore network models, Fuel 145(2015) 170-179. [265] L. Yang, L. Ai, K. Xue, Z. Ling, Y. Li, Analyzing the effects of inhomogeneity on the permeability of porous media containing methane hydrates through pore network models combined with CT observation, Energy 163(2018) 27-37. [266] Y. Halpern, V. Thieu, R.W. Henning, X. Wang, A.J. Schultz, Time-Resolved in Situ Neutron Diffraction Studies of Gas Hydrate:Transformation of Structure II (sII) to Structure I (sI), J. Am. Chem. Soc. 123(51) (2001) 12826-12831. [267] R. Susilo, J.A. Ripmeester, P. Englezos, Characterization of gas hydrates with PXRD, DSC, NMR, and raman spectroscopy, Chem. Eng. Sci. 62(15) (2007) 3930-3939. [268] H.H. Lee, S.H. Ahn, B.U. Nam, B.S. Kim, G.W. Lee, D. Moon, H.J. Shin, K.W. Han, J.H. Yoon, Thermodynamic stability, spectroscopic identification, and gas storage capacity of CO2-CH4-N2 mixture gas hydrates:Implications for landfill gas hydrates, Environ. Sci. Technol. 46(7) (2012) 4184. [269] L. Zhang, J. Zhao, H. Dong, Y. Zhao, Y. Liu, Y. Zhang, Y. Song, Magnetic resonance imaging for in-situ observation of the effect of depressurizing range and rate on methane hydrate dissociation, Chem. Eng. Sci. 144(2016) 135-143. [270] J. Zhao, Q. Lv, Y. Li, M. Yang, W. Liu, L. Yao, S. Wang, Y. Zhang, Y. Song, In-situ visual observation for the formation and dissociation of methane hydrates in porous media by magnetic resonance imaging, Magn. Reson. Imaging 33(4) (2015) 485-490. [271] J. Zhao, L. Yao, Y. Song, K. Xue, C. Cheng, Y. Liu, Y. Zhang, In situ observations by magnetic resonance imaging for formation and dissociation of tetrahydrofuran hydrate in porous media, Magn. Reson. Imaging 29(2011) 281-288. [272] C.X. Cheng, J.F. Zhao, Y.C. Song, Z.H. Zhu, W.G. Liu, Y. Zhang, M.J. Yang, Y.U. Xichong, In-situ observation for formation and dissociation of carbon dioxide hydrate in porous media by magnetic resonance imaging, Sci. China Earth Sci. 56(4) (2013) 611-617. [273] Y. Kuang, X. Lei, L. Yang, Y. Zhao, J. Zhao, Observation of in situ growth and decomposition of carbon dioxide hydrate at gas-water interfaces using magnetic resonance imaging, Energy Fuel 6(32) (2018) 6964-6969. [274] M.A. Clarke, P.R. Bishnoi, Determination of the intrinsic kinetics of CO gas hydrate formation using in situ particle size analysis, Chem. Eng. Sci. 60(3) (2005) 695-709. [275] L. Yang, W. Zhou, K. Xue, R. Wei, Z. Ling, A pressure core ultrasonic test system for on-board analysis of gas hydrate-bearing sediments under in situ pressures, Rev. Sci. Instrum. 89(5) (2018) 054904. [276] C.G. Xu, X.S. Li, Cheminform abstract:Research progress on methane production from natural gas hydrates, Cheminform 46(33) (2015) 54672-54699. [277] J.C. Feng, Y. Wang, X.S. Li, Hydrate dissociation induced by depressurization in conjunction with warm brine stimulation in cubic hydrate simulator with silica sand, Appl. Energy 174(2016) 181-191. [278] J.C. Feng, G. Li, X.S. Li, B. Li, Z.Y. Chen, Evolution of hydrate dissociation by warm brine stimulation combined depressurization in the South China Sea, Energies 6(10) (2013) 5402-5425. [279] L.I. Shu-Xia, Y.M. Chen, W.W. Zhang, X.R. Xia, Experimental study of natural gas hydrate dissociation in porous media by thermal stimulation and depressurization, J. Exp. Mech. 26(2) (2011) 202-208. [280] Y. Liang, S. Liu, W. Zhao, B. Li, Q. Wan, G. Li, Effects of vertical center well and side well on hydrate exploitation by depressurization and combination method with wellbore heating, J. Nat. Gas Sci. Eng. 55(2018) 154-164. [281] B. Wang, Z. Fan, J. Zhao, X. Lv, P. Wang, Q. Li, Influence of intrinsic permeability of reservoir rocks on gas recovery from hydrate deposits via a combined depressurization and thermal stimulation approach, Appl. Energy 229(2018) 858-871. [282] Y. Song, J. Wang, L. Yu, J. Zhao, Analysis of heat transfer influences on gas production from methane hydrates using a combined method, Int. J. Heat Mass Transf. 92(2016) 766-773. [283] J. Zhao, L. Yang, K. Xue, W. Lam, Y. Li, Y. Song, In situ observation of gas hydrates growth hosted in porous media, Chem. Phys. Lett. 612(2014) 124-128. [284] Y. Song, K. Xue, J. Zhao, W. Lam, C. Cheng, M. Yang, Y. Zhang, D. Wang, W. Liu, Y. Liu, In situ observation of hydrate growth habit in porous media using magnetic resonance imaging, Epl-Europhys. Lett. 101(3) (2013) 36004. [285] J.Z.Y.S. Kaihua Xue, Direct observation of THF hydrate formation in porous microstructure using magnetic resonance imaging, Energies 5(2012) 898-910. [286] S. Li, R. Zheng, X. Xu, Y. Chen, Dissociation of methane hydrate by hot brine, Liquid Fuels Technol. 33(6) (2015) 671-677. [287] S. Li, R. Zheng, X. Xu, J. Hou, Natural gas hydrate dissociation by hot brine injection, Liquid Fuels Technol. 34(5) (2016) 422-428. [288] J.C. Feng, Y. Wang, X.S. Li, G. Li, Z.Y. Chen, J.C. Feng, Y. Wang, X.S. Li, G. Li, Z.Y. Chen, Production behaviors and heat transfer characteristics of methane hydrate dissociation by depressurization in conjunction with warm water stimulation with dual horizontal wells, Energy 79(2015) 315-324. [289] S. Falser, S. Uchida, A.C. Palmer, K. Soga, T.S. Tan, Increased gas production from hydrates by combining depressurization with heating of the wellbore, Energy Fuel 26(10) (2012) 6259-6267. [290] C. Cranganu, In-situ thermal stimulation of gas hydrates, J. Pet. Sci. Eng. 65(1) (2009) 76-80. [291] X.R. Chen, X.S. Li, Z.Y. Chen, Y. Zhang, K.F. Yan, Q.N. Lv, Experimental investigation into the combustion characteristics of propane hydrates in porous media, Energies 8(2) (2015) 1242-1255. [292] Z. Chen, J. Feng, X. Li, Z. Yu, L. Bo, Q. Lv, Preparation of warm brine in situ seafloor based on the hydrate process for marine gas hydrate thermal stimulation, Ind. Eng. Chem. Res. 53(36) (2014) 14142-14157. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||