中国化学工程学报 ›› 2020, Vol. 28 ›› Issue (11): 2707-2722.DOI: 10.1016/j.cjche.2020.07.037
• Review • 下一篇
Yuyun Bao, Jinting Jia, Shuaifei Tong, Zhengming Gao, Ziqi Cai
收稿日期:
2019-11-29
修回日期:
2020-07-20
出版日期:
2020-11-28
发布日期:
2020-12-31
通讯作者:
Zhengming Gao, Ziqi Cai
基金资助:
Yuyun Bao, Jinting Jia, Shuaifei Tong, Zhengming Gao, Ziqi Cai
Received:
2019-11-29
Revised:
2020-07-20
Online:
2020-11-28
Published:
2020-12-31
Contact:
Zhengming Gao, Ziqi Cai
Supported by:
摘要: It is common to empirically correlate volumetric mass transfer coefficient kLa for predicting gas-liquid mass transfer in industrial applications, and the investigation of single bubble mass transfer is crucial for a detailed understanding of mass transfer mechanism. In this work, experiments, models and simulations based on the experimental results were highlighted to elucidate the mass transfer between single bubbles and ambient liquid. The experimental setups, measurement methods, the mass transfer of single bubbles in the Newtonian and the nonNewtonian liquid, models derived from the concept of eddy diffusion, the extension of Whitman's, Higbie's and Danckwerts' models, or dimensionless numbers, and simulation methods on turbulence, gas-liquid partition methods and mass transfer source term determination are introduced and commented on. Although people have a great knowledge on mass transfer between single bubbles and ambient liquid in single conditions, it is still insufficient when facing complex liquid conditions or some phenomena such as turbulence, contamination or non-Newtonian behavior. Additional studies on single bubbles are required for experiments and models in various liquid conditions in future.
Yuyun Bao, Jinting Jia, Shuaifei Tong, Zhengming Gao, Ziqi Cai. A review on single bubble gas–liquid mass transfer[J]. 中国化学工程学报, 2020, 28(11): 2707-2722.
Yuyun Bao, Jinting Jia, Shuaifei Tong, Zhengming Gao, Ziqi Cai. A review on single bubble gas–liquid mass transfer[J]. Chinese Journal of Chemical Engineering, 2020, 28(11): 2707-2722.
[1] Y. Bao, J. Yang, B. Wang, Z. Gao, Influence of impeller diameter on local gas dispersion properties in a sparged multi-impeller stirred tank, Chin. J. Chem. Eng. 23(4) (2015) 615-622. [2] W. Li, X. Geng, Y. Bao, Z. Gao, Micromixing characteristics in a gas-liquid-solid stirred tank with settling particles, Chin. J. Chem. Eng. 23(3) (2015) 461-470. [3] Y. Bao, B. Wang, M. Lin, Z. Gao, J. Yang, Influence of impeller diameter on overall gas dispersion properties in a sparged multi-impeller stirred tank, Chin. J. Chem. Eng. 23(6) (2015) 890-896. [4] J. Zhang, Z. Gao, Y. Cai, Z. Cai, J. Yang, Y. Bao, Mass transfer in gas-liquid stirred reactor with various triple-impeller combinations, Chin. J. Chem. Eng. 24(6) (2016) 703-710. [5] W.J. Nock, S. Heaven, C.J. Banks, Mass transfer and gas-liquid interface properties of single CO2 bubbles rising in tap water, Chem. Eng. Sci. 140(2016) 171-178. [6] J. Solsvik, Lagrangian modeling of mass transfer from a single bubble rising in stagnant liquid, Chem. Eng. Sci. 190(2018) 370-383. [7] J.B. Joshi, K. Nandakumar, G.M. Evans, V.K. Pareek, M.M. Gumulya, M.J. Sathe, M.A. Khanwale, Bubble generated turbulence and direct numerical simulations, Chem. Eng. Sci. 157(2017) 26-75. [8] M.H.I. Baird, J.F. Davidson, Gas absorption by large rising bubbles, Chem. Eng. Sci. 17(2) (1962) 87-93. [9] J.H. Leonard, G. Houghton, Mass transfer and velocity of rise phenomena for single bubbles, Chem. Eng. Sci. 18(2) (1963) 133-142. [10] S. Amirnia, J.R. de Bruyn, M.A. Bergougnou, A. Margaritis, Continuous rise velocity of air bubbles in non-Newtonian biopolymer solutions, Chem. Eng. Sci. 94(2013) 60-68. [11] K.H. Dewsbury, K.D. G., A. Margaritis, Hydrodynamic characteristics of free rise of light solid particles and gas bubbles in non-newtonian liquids, Chem. Eng. Sci. 54(21) (1999) 4825-4830. [12] C. Ohl, Generator for single bubbles of controllable size, Rev. Sci. Instrum. 72(1) (2001) 252-254. [13] M. Shirota, T. Sanada, A. Sato, M. Watanabe, Formation of a submillimeter bubble from an orifice using pulsed acoustic pressure waves in gas phase, Phys. Fluids 20(4) (2008) 1109. [14] T. Nate, D.M. Himmelblau, Mass transfer from large single bubbles at high Reynolds numbers, AIChE J. 13(4) (1967) 697-702. [15] C. Zhu, Study on Flow Field and Concentration Porfile around Bubbles in Non-Newtonian Fluid, PhD Thesis, Tianjin University, 2010. [16] J.M.T. Vasconcelos, S.P. Orvalho, S.S. Alves, Gas-liquid mass transfer to single bubbles:effect of surface contamination, AIChE J. 48(6) (2002) 1145-1154. [17] P. Lakshmanan, F. Peters, N. Fries, P. Ehrhard, Gas bubbles in simulation and experiment, J. Colloid Interface Sci. 354(1) (2011) 364-372. [18] Y. Bao, Z. Jiang, S. Tong, X. Huang, Z. Cai, Z. Gao, Reactive mass transfer of single O2 bubbles in a turbulent flow chamber, Chem. Eng. Sci. 207(2019) 829-843. [19] S. Someya, S. Bando, Y. Song, B. Chen, M. Nishio, DeLIF measurement of pH distribution around dissolving CO2 droplet in high pressure vessel, Int. J. Heat Mass Transf. 48(12) (2005) 2508-2515. [20] A. Dani, P. Guiraud, A. Cockx, Local measurement of oxygen transfer around a single bubble by planar laser-induced fluorescence, Chem. Eng. Sci. 62(24) (2007) 7245-7252. [21] J. Francois, N. Dietrich, P. Guiraud, A. Cockx, Direct measurement of mass transfer around a single bubble by micro-PLIFI, Chem. Eng. Sci. 66(14) (2011) 3328-3338. [22] P. Valiorgue, N. Souzy, M. El Hajem, H.B. Hadid, S. Simoëns, Concentration measurement in the wake of a free rising bubble using planar laser-induced fluorescence (PLIF) with a calibration taking into account fluorescence extinction variations, Exp. Fluids 54(4) (2013), 1501. [23] T. Saito, M. Toriu, Effects of a bubble and the surrounding liquid motions on the instantaneous mass transfer across the gas-liquid interface, Chem. Eng. J. 265(2015) 164-175. [24] G. Kong, K.A. Buist, E.A.J.F. Peters, J.A.M. Kuipers, Dual emission LIF technique for pH and concentration field measurement around a rising bubble, Exp. Thermal Fluid Sci. 93(2018) 186-194. [25] J. Coppeta, C. Rogers, Dual emission laser induced fluorescence for direct planar scalar behavior measurements, Exp. Fluids 25(1) (1998) 1-15. [26] N. Dietrich, K. Loubière, M. Jimenez, G. Hébrard, C. Gourdon, A new direct technique for visualizing and measuring gas-liquid mass transfer around bubbles moving in a straight millimetric square channel, Chem. Eng. Sci. 100(2013) 172-182. [27] R. Clift, J.R. Grace, M.E. Weber, Bubbles, Drops, and Particles, Academic Press, 1978. [28] G.R. Garbarini, C. Tien, Mass transfer from single gas bubble-a comparative study on experimental methods, Can. J. Chem. Eng. 47(1) (1969) 35-41. [29] P.H. Calderbank, A.C. Lochiel, Mass transfer coefficients, velocities and shapes of carbon dioxide bubbles in free rise through distilled water, Chem. Eng. Sci. 19(7) (1964) 485-503. [30] W.K. Lewis, W.G. Whitman, The two-film theory of gas absorption, Ind. Eng. Chem. 16(1924) 1215-1219. [31] M. Filla, J.F. Davidson, J.F. Bates, M.A. Eccles, Gas phase controlled mass transfer from a bubble, Chem. Eng. Sci. 31(5) (1976) 359-367. [32] M. Martín, F.J. Montes, M.A. Galán, Oxygen transfer from growing bubbles:effect of the physical properties of the liquid, Chem. Eng. J. 128(1) (2007) 21-32. [33] F. Bischof, M. Sommerfeld, F. Durst, The determination of mass transfer rates from individual small bubbles, Chem. Eng. Sci. 46(12) (1991) 3115-3121. [34] F. Deindoerfer, A. Humphrey, Mass transfer from individual gas bubbles, Ind. Eng. Chem. 53(9) (1961) 755-759. [35] Y. Hori, K. Hayashi, S. Hosokawa, A. Tomiyama, Mass transfer from single carbondioxide bubbles in electrolyte aqueous solutions in vertical pipes, Int. J. Heat Mass Transf. 115(2017) 663-671. [36] A. Saboni, S. Alexandrova, M. Karsheva, C. Gourdon, Mass transfer into a spherical bubble, Chem. Eng. Sci. 152(2016) 109-115. [37] F. Takemura, A. Yabe, Gas dissolution process of spherical rising gas bubbles, Chem. Eng. Sci. 53(15) (1998) 2691-2699. [38] S.M. Barnett, A.E. Humphrey, M. Litt, Bubble motion and mass transfer in nonNewtonian fluids, AIChE J. 12(2) (1966) 253-259. [39] S.A. Zieminski, D.R. Raymond, Experimental study of the behavior of single bubbles, Chem. Eng. Sci. 23(1) (1968) 17-28. [40] A. Saboni, S. Alexandrova, A. Spasic, C. Gourdon, Effect of the viscosity ratio on mass transfer from a fluid sphere at low to very high Peclet numbers, Chem. Eng. Sci. 62(17) (2007) 4742-4750. [41] P.G. Saffman, On the rise of small air bubbles in water, J. Fluid Mech. 1(03) (1956) 249-275. [42] K. Koide, Y. Orito, Y. Hara, Mass transfer from single bubbles in Newtonian liquids, Chem. Eng. Sci. 29(2) (1974) 417-425. [43] K. Koide, T. Hayashi, K. Sumino, Mass transfer from single bubbles in aqueous solutions of surfactants, Chem. Eng. Sci. 31(10) (1976) 963-967. [44] J. Huang, T. Saito, Influences of gas-liquid interface contamination on bubble motions, bubble wakes, and instantaneous mass transfer, Chem. Eng. Sci. 157(2017) 182-199. [45] J. Aoki, Y. Hori, K. Hayashi, S. Hosokawa, A. Tomiyama, Mass transfer from single carbon dioxide bubbles in alcohol aqueous solutions in vertical pipes, Int. J. Heat Mass Transf. 108(2017) 1991-2001. [46] J.T. Davies, A.A. Kilner, G.A. Ratcliff, The effect of diffusivities and surface films on rates of gas absorption, Chem. Eng. Sci. 19(8) (1964) 583-590. [47] D. Gómez-Díaz, J.M. Navaza, B. Sanjurjo, Mass-transfer enhancement or reduction by surfactant presence at a gas-liquid interface, Ind. Eng. Chem. Res. 48(5) (2009) 2671-2677. [48] S. Roy, S.R. Duke, Visualization of oxygen concentration fields and measurement of concentration gradients at bubble surfaces in surfactant-contaminated water, Exp. Fluids 36(4) (2004) 654-662. [49] J. Aoki, K. Hayashi, A. Tomiyama, Mass transfer from single carbon dioxide bubbles in contaminated water in a vertical pipe, Int. J. Heat Mass Transf. 83(2015) 652-658. [50] M. Haghnegahdar, S. Boden, U. Hampel, Investigation of mass transfer in millichannels using high-resolution microfocus X-ray imaging, Int. J. Heat Mass Transf. 93(2016) 653-664. [51] R. Sardeing, P. Painmanakul, G. Hébrard, Effect of surfactants on liquid-side mass transfer coefficients in gas-liquid systems:a first step to modeling, Chem. Eng. Sci. 61(19) (2006) 6249-6260. [52] R. Griffith, The effect of surfactants on the terminal velocity of drops and bubbles, Chem. Eng. Sci. 17(12) (1962) 1057-1070. [53] F. Goodridge, I.D. Robb, Mechanism of interfacial resistance in gas absorption, Ind. Eng. Chem. Fundam. 4(1) (1965) 49-55. [54] Y. Zhang, J.B. Mclaughlin, J.A. Finch, Bubble velocity profile and model of surfactant mass transfer to bubble surface, Chem. Eng. Sci. 56(23) (2001) 6605-6616. [55] F. Takemura, Y. Matsumoto, Dissolution rate of spherical carbon dioxide bubbles in strong alkaline solutions, Chem. Eng. Sci. 55(18) (2000) 3907-3917. [56] P. Savic, Circulation and Distortion of Liquid Drops Falling through a Viscous Medium, National Research Council Canada 1953. [57] S.S. Sadhal, R.E. Johnson, Stokes flow past bubbles and drops partially coated with thin films. Part 1. Stagnant cap of surfactant film-exact solution, J. Fluid Mech. 126(126) (1983) 237-250. [58] S.S. Ponoth, J.B. Mclaughlin, Numerical simulation of mass transfer for bubbles in water, Chem. Eng. Sci. 55(7) (2000) 1237-1255. [59] N. Kishore, R.P. Chhabra, V. Eswaran, Mass transfer from a single fluid sphere to power-law liquids at moderate Reynolds numbers, Chem. Eng. Sci. 62(21) (2007) 6040-6053. [60] S. Dhole, R. Chhabra, V. Eswaran, Mass transfer from a spherical bubble rising in power-law fluids at intermediate Reynolds numbers, Int. Commun. Heat. Mass. 34(8) (2007) 971-978. [61] T. Hirose, M. Moo-Young, Bubble drag and mass transfer in non-newtonian fluids:creeping flow with power-law fluids, Can. J. Chem. Eng. 47(3) (1969) 265-267. [62] S. Bhavaraju, R. Mashelkar, H. Blanch, Bubble motion and mass transfer in nonNewtonian fluids:part I. Single bubble in power law and Bingham fluids, AIChE J. 24(6) (1978) 1063-1070. [63] S. Radl, G. Tryggvason, J.G. Khinast, Flow and mass transfer of fully resolved bubbles in non-Newtonian fluids, AIChE J. 53(7) (2007) 1861-1878. [64] P.H. Calderbank, D.S.L. Johnson, J. Loudon, Mechanics and mass transfer of single bubbles in free rise through some Newtonian and non-Newtonian liquids, Chem. Eng. Sci. 25(2) (1970) 235-256. [65] F. Xu, A. Cockx, G. Hébrard, N. Dietrich, Mass transfer and diffusion of a single bubble rising in polymer solutions, Ind. Eng. Chem. Res. 57(44) (2018) 15181-15194. [66] W.G. Whitman, A preliminary experimental comfirmation of principles of two-film theory of gas absorption, Chem. Metall. Eng. 29(1923) 146-148. [67] R. Higbie, The rate of absorption of a pure gas into still liquid during short periods of exposure, Trans. Am. Inst. Chem. Eng. 31(1935) 365-389. [68] P.V. Danckwerts, Significance of liquid-film coefficients in gas absorption, Ind. Eng. Chem. 43(6) (1951) 1460-1467. [69] C.J. King, Turbulent liquid phase mass transfer at a free gas-liquid interface, Ind. Eng. Chem. Fundam. 5(1) (1966) 1-8. [70] G.E. Fortescue, J.R.A. Pearson, On gas absorption into a turbulent liquid, Chem. Eng. Sci. 22(9) (1967) 1163-1176. [71] J.C. Lamont, D.S. Scott, An eddy cell model of mass transfer into the surface of a turbulent liquid, AIChE J. 16(4) (1970) 513-519. [72] B.D. Prasher, G.B. Wills, Mass transfer in an agitated vessel, Ind. Eng. Chem. Proc. Des. Dev. 12(3) (1973) 351-354. [73] S. Luk, Y.H. Lee, Mass transfer in eddies close to air-water interface, AIChE J. 32(9) (1986) 1546-1554. [74] S.S. Alves, J.M.T. Vasconcelos, S.P. Orvalho, Mass transfer to clean bubbles at low turbulent energy dissipation, Chem. Eng. Sci. 61(4) (2006) 1334-1337. [75] T.J. Hanratty, Turbulent exchange of mass and momentum with a boundary, AIChE J. 2(3) (1956) (359-263). [76] H.L. Toor, Film-penetration model for mass and heat transfer, AIChE J. 4(1) (1958) 97-101. [77] D.D. Perlmutter, Surface-renewal models in mass transfer, Chem. Eng. Sci. 16(3) (1961) 287-296. [78] W.E. Dobbins, BOD and oxygen relationship in streams, J. Sanit. Eng. Div. 90(3) (1964) 53-78. [79] B. Zhao, J. Wang, W. Yang, Y. Jin, Gas-liquid mass transfer in slurry bubble systems I. Mathematical modeling based on a single bubble mechanism, Chem. Eng. J. 96(1-3) (2003) 23-27. [80] Z. Shen, W. Xu, J. Ding, Interphase Mass Transfer(I)-a modified surface film renewal model, J. Chem. Ind. Eng. 4(1980) 319-332. [81] J.B. Angelo, E.N. Lightfoot, D.W. Howard, Generalization of the penetration theory for surface stretch:application to forming and oscillation drops, AIChE J. 12(4) (1966) 751-760. [82] B. Jajuee, A. Margaritis, D. Karamanev, M.A. Bergougnou, Application of surfacerenewal-stretch model for interface mass transfer, Chem. Eng. Sci. 61(12) (2006) 3917-3929. [83] X. Gao, The Mechanism and Enhancement of Gas-liquid Interfacial Mass Transfer, PhD thesis Tianjin University, Tianjin, 2008. [84] J. Zhang, Z. Gao, Y. Cai, H. Cao, Z. Cai, Y. Bao, Power consumption and mass transfer in a gas-liquid-solid stirred tank reactor with various triple-impeller combinations, Chem. Eng. Sci. 170(2017) 464-475. [85] A.A. Kendoush, Theory of convective heat and mass transfer to spherical-cap bubbles, AIChE J. 40(9) (1994) 1440-1448. [86] A.A. Kendoush, Heat, mass, and momentum transfer to a rising ellipsoidal bubble, Ind. Eng. Chem. Res. 46(26) (2007) 9232-9237. [87] J. Boussinesq, An equation for the phenomena of heat convection and an estimate of the cooling power of fluids, J. Undergrad. Math. 1(1905) 285-332. [88] M. Baird, A. Hamielec, Forced convection transfer around spheres at intermediate Reynolds numbers, Can. J. Chem. Eng. 40(3) (1962) 119-121. [89] A.C. Lochiel, P.H. Calderbank, Mass transfer in the continuous phase around axisymmetric bodies of revolution, Chem. Eng. Sci. 19(7) (1964) 471-484. [90] N. Frossling, Uber die Verdunstung fallender Tropfen, Beitr.geophys.gerlands (1938) 52. [91] P.H. Calderbank, M.B. Moo-Young, The continuous phase heat and mass transfer properties of dispersions, Chem. Eng. Sci. 16(1961) 39-54. [92] J.H.C. Coppus, K. Rietema, Theoretical derivation of the mass transfer coefficient at the front of a spherical cap bubble, Chem. Eng. Sci. 35(6) (1980) 1497-1499. [93] D. Gómez-Díaz, N. Gomes, J.A. Teixeira, I. Belo, Oxygen mass transfer to emulsions in a bubble column contactor, Chem. Eng. J. 152(2) (2009) 354-360. [94] R.M. Wellek, T. Gürkan, Mass transfer to drops moving through power law fluids in the intermediate Reynolds number region, AIChE J. 22(3) (1976) 484-490. [95] P. Chou, Modern developments in the theory of turbulence, Acta Phys. Sin. 13(3) (1957) 220-244. [96] J. Rotta, Beitrag zur Berechnung der turbulenten Grenzschichten, Ingenieur-Archiv 19(1) (1951) 31-41. [97] S.B. Pope, Turbulent Flows, IOP Publishing, 2001. [98] X. Feng, C. Yang, Z.-S. Mao, J. Lu, G. Tryggvason, Bubble induced turbulence model improved by direct numerical simulation of bubbly flow, Chem. Eng. J. 377(2019), 120001. [99] G. Hu, I. Celik, Eulerian-Lagrangian based large-eddy simulation of a partially aerated flat bubble column, Chem. Eng. Sci. 63(1) (2008) 253-271. [100] S. Shu, N. Yang, GPU-accelerated large eddy simulation of stirred tanks, Chem. Eng. Sci. 181(2018) 132-145. [101] N.D. Shutler, Numerical, three-phase simulation of the linear steamflood process, Soc. Pet. Eng. J. 9(02) (1969) 232-246. [102] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39(1) (1981) 201-225. [103] S.O. Unverdi, G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys. 100(1) (1992) 25-37. [104] M. Sussman, P. Smereka, S. Osher, A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys. 114(1) (1994) 146-159. [105] T. Kawamura, Y. Kodama, Numerical simulation method to resolve interactions between bubbles and turbulence, Int. J. Heat Fluid Fl. 23(5) (2002) 627-638. [106] D. Bothe, M. Koebe, K. Wielage, J. Prüss, H.-J. Warnecke, Direct numerical simulation of mass transfer between rising gas bubbles and water, Bubbly Flows:Springer (2004) 159-174. [107] Y. Alhendal, A. Turan, P. Hollingsworth, Thermocapillary simulation of single bubble dynamics in zero gravity, Acta Astronaut 88(88) (2013) 108-115. [108] S.-S. Jeon, S.-J. Kim, G.-C. Park, CFD simulation of condensing vapor bubble using VOF model, World Acad. Sci. Eng. Technol. 60(2009) 209-215. [109] J. Feng, X. Li, Y. Bao, Z. Cai, Z. Gao, Coalescence and conjunction of two in-line bubbles at low Reynolds numbers, Chem. Eng. Sci. 141(2016) 261-270. [110] W. Abbassi, S. Besbes, M. Elhajem, H.B. Aissia, J.Y. Champagne, Numerical simulation of free ascension and coaxial coalescence of air bubbles using the volume of fluid method (VOF), Comput. Fluids 161(2018) 47-59. [111] M. van Sint Annaland, W. Dijkhuizen, N. Deen, J. Kuipers, Numerical simulation of behavior of gas bubbles using a 3-D front-tracking method, AIChE J. 52(1) (2006) 99-110. [112] J. Hua, J. Lou, Numerical simulation of bubble rising in viscous liquid, J. Comput. Phys. 222(2) (2007) 769-795. [113] N. Samkhaniani, M.R. Ansari, Numerical simulation of bubble condensation using CF-VOF, Prog. Nucl. Energy 89(2016) 120-131. [114] R.J. McSherry, K.V. Chua, T. Stoesser, Large eddy simulation of free-surface flows, J. Hydrodyn. Ser. B 29(1) (2017) 1-12. [115] J. Donea, A. Huerta, J.-P. Ponthot, A. Rodriguez-Ferran, Arbitrary LagrangianEulerian Methods, Volume 1 of Encyclopedia of Computational Mechanics, Chapter 14, 3, John Wiley & Sons Ltd, 20041-25. [116] M. Falcone, B. Dieter, M. Holger, 3D direct numerical simulations of reactive mass transfer from deformable single bubbles:an analysis of mass transfer coefficients and reaction selectivities, Chem. Eng. Sci. 177(2018) 523-536. [117] J.J. Monaghan, Smoothed particle hydrodynamics and its diverse applications, Annu. Rev. Fluid Mech. 44(2012) 323-346. [118] K. Szewc, J. Pozorski, J.-P. Minier, Simulations of single bubbles rising through viscous liquids using smoothed particle hydrodynamics, Int. J. Multiphase Flow 50(2013) 98-105. [119] W. Zhang, Y. Yang, J. Xu, Theory and application of lattice Boltzmann method, Mod. Mach. 4(2003) 4-6. [120] S. Chen, G.D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech. 30(1) (1998) 329-364. [121] L. Amaya-Bower, T. Lee, Numerical simulation of single bubble rising in vertical and inclined square channel using lattice Boltzmann method, Chem. Eng. Sci. 66(5) (2011) 935-952. [122] X. Li, D. Gao, B. Hou, X. Wang, A mass-conserving lattice Boltzmann method for bubble behavior estimation, Chem. Eng. Sci. 193(2019) 76-88. [123] X. Wang, Numerical simulation of single bubble motion in ionic liquids, Chem. Eng. Sci. 65(22) (2010) 6036-6047. [124] S. Schwarz, J. Fröhlich, Numerical study of single bubble motion in liquid metal exposed to a longitudinal magnetic field, Int. J. Multiphase Flow 62(2) (2014) 134-151. [125] D. Bao, X. Zhang, H. Dong, Z. Ouyang, X. Zhang, S. Zhang, Numerical simulations of bubble behavior and mass transfer in CO2 capture system with ionic liquids, Chem. Eng. Sci. 135(2015) 76-88. [126] B. Figueroa-Espinoza, D. Legendre, Mass or heat transfer from spheroidal gas bubbles rising through a stationary liquid, Chem. Eng. Sci. 65(23) (2010) 6296-6309. [127] A. Ganguli, E. Kenig, A CFD-based approach to the interfacial mass transfer at free gas-liquid interfaces, Chem. Eng. Sci. 66(14) (2011) 3301-3308. [128] D. Colombet, D. Legendre, A. Cockx, P. Guiraud, Mass or heat transfer inside a spherical gas bubble at low to moderate Reynolds number, Int. J. Heat Mass Transf. 67(2013) 1096-1105. [129] J. Zhang, C. Yang, Z.S. Mao, Mass and heat transfer from or to a single sphere in simple extensional creeping flow, AIChE J. 58(10) (2012) 3214-3223. [130] B. Yuan, C. Yang, Z.S. Mao, X. Yin, D.L. Koch, Heat/mass transfer from a neutrally buoyant sphere by mixed natural and forced convection in a simple shear flow, AIChE J. 64(7) (2018) 2816-2827. [131] G.Y. Soh, G.H. Yeoh, V. Timchenko, A CFD model for the coupling of multiphase, multicomponent and mass transfer physics for micro-scale simulations, Int. J. Heat Mass Transf. 113(2017) 922-934. [132] G. Juncu, A numerical study of the unsteady heat/mass transfer inside a circulating sphere, Int. J. Heat Mass Transf. 53(15-16) (2010) 3006-3012. [133] A. Hassanvand, S.H. Hashemabadi, Direct numerical simulation of interphase mass transfer in gas-liquid multiphase systems, Int. Commun. Heat Mass 38(7) (2011) 943-950. [134] F.H. Yin, C.G. Sun, A. Afacan, A.K. Nandakumar, K.T. Chuang, CFD modeling of masstransfer processes in randomly packed distillation columns, Ind. Eng. Chem. Res. 39(5) (2000) 1369-1380. [135] D. Deising, D. Bothe, H. Marschall, Direct numerical simulation of mass transfer in bubbly flows, Comput. Fluids 172(2018) 524-537. [136] M. Silva, J. Campos, J. Araújo, Mass transfer from a soluble Taylor bubble to the surrounding flowing liquid in a vertical macro tube-a numerical approach, Chem. Eng. Res. Des. 144(2019) 47-62. [137] C. Wang, Z. Xu, C. Lai, G.A. Whyatt, P. Marcy, J. Gattiker, X. Sun, PNNL Report on the Development of Bench-scale CFD Simulations for Gas Absorption Across a Wetted Wall Column. Pacific Northwest National Lab. (PNNL), Richland, WA, United States, 2016. [138] H. Jia, X. Xiao, Y. Kang, Investigation of a free rising bubble with mass transfer by an arbitrary Lagrangian-Eulerian method, Int. J. Heat Mass Transf. 137(2019) 545-557. [139] J.G. Khinast, A.A. Koynov, T.M. Leib, Reactive mass transfer at gas-liquid interfaces:impact of micro-scale fluid dynamics on yield and selectivity of liquid-phase cyclohexane oxidation, Chem. Eng. Sci. 58(17) (2003) 3961-3971. [140] B. Aboulhasanzadeh, S. Thomas, M. Taeibi-Rahni, G. Tryggvason, Multiscale computations of mass transfer from buoyant bubbles, Chem. Eng. Sci. 75(25) (2012) 456-467. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||