[1] P. Kadlec, B. Gabrys, S. Strandt, Data-driven soft sensors in the process industry, Comput. Chem. Eng. 33(2009) 795-814. [2] H. Lou, H. Su, L. Xie, Y. Gu, G. Rong, Inferential model for industrial polypropylene melt index prediction with embedded priori knowledge and delay estimation, Ind. Eng. Chem. Res. 51(2012) 8510-8525. [3] P. Kadlec, R. Grbić, B. Gabrys, Review of adaptation mechanisms for data-driven soft sensors, Comput. Chem. Eng. 35(2011) 1-24. [4] J.H. Zheng, Z.H. Song, Linear subspace principal domponent regression model for quality estimation of nonlinear and multimode industrial processes, Ind. Eng. Chem. Res. 56(2017) 6275-6285. [5] B. Zhu, Z.S. Chen, Y.L. He, L.A. Yu, A novel nonlinear functional expansion based PLS (FEPLS) and its soft sensor application, Chemom. Intell. Lab. Syst. 161(2017) 108-117. [6] S.J. Xue, X.F. Yan, A new kernel function of support vector regression combined with probability distribution and its application in chemometrics and the QSAR modeling, Chemom. Intell. Lab. Syst. 167(2017) 96-101. [7] C. Shang, F. Yang, X.Q. Gao, X.L. Huang, J.A.K. Suykens, D.X. Huang, Concurrent monitoring of operating condition deviations and process dynamics anomalies with slow feature analysis, AIChE J. 61(2015) 3666-3682. [8] J. Huang, O.K. Ersoy, X.F. Yan, Slow feature analysis based on online feature reordering and feature selection for dynamic chemical process monitoring, Chemom. Intell. Lab. Syst. 169(2017) 1-11. [9] L. Wiskott, T.J. Sejnowski, Slow feature analysis:unsupervised learning of invariances, Neural Comput. 14(2002) 715-770. [10] C. Shang, F. Yang, X.Q. Gao, D.X. Huang, Extracting Latent Dynamics From Process Data for Quality Prediction and Performance Assessment via Slow Feature Regression, American Control Conference, IEEE, Chicago, 2015912-917. [11] C. Shang, B. Huang, F. Yang, D.X. Huang, Probabilistic slow feature analysis-based representation learning from massive process data for soft sensor modeling, AIChE J. 61(2015) 4126-4139. [12] Z.Q. Ge, Z.H. Song, Subspace partial least squares model for multivariate spectroscopic calibration, Chemom. Intell. Lab. Syst. 125(2013) 51-57. [13] L. Breiman, Bagging predictors, Mach. Learn. 24(1996) 123-140. [14] Z.Q. Ge, Z.H. Song, Ensemble independent component regression models and soft sensing application, Chemom. Intell. Lab. Syst. 130(2014) 115-122. [15] W. Konen, P. Koch, The slowness principle:SFA can detect different slow components in non-stationary time series, Int. J. Innov. Comput. Appl. 3(2011) 3-10. [16] X.Q. Gao, C. Shang, F. Yang, D.X. Huang, Detecting and isolating plant-wide oscillations via slow feature analysis, American Control Conference (2015) 906-911. [17] C. Shang, X.L. Huang, J.A.K. Suykens, D.X. Huang, Enhancing dynamic soft sensors based on DPLS:a temporal smoothness regularization approach, J. Process Contr. 28(2015) 17-26. [18] F. Rossi, A. Lendasse, D. François, V. Wertz, M. Verleysen, Mutual information for the selection of relevant variables in spectrometric nonlinear modelling, Chemom. Intell. Lab. Syst. 80(2006) 215-226. [19] R. Grbić, D. Slišković, P. Kadlec, Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models, Comput. Chem. Eng. 58(2013) 84-97. [20] C.E. Shannon, Communication theory of secrecy systems, Bell Syst. Tech. J. 28(1949) 656-715. [21] H.C. Peng, F.H. Long, C. Ding, Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy, IEEE Trans. Pattern Anal. Mach. Intell. 27(2005) 1226-1238. [22] M.C. Jones, J.S. Marron, S.J. Sheather, A brief survey of bandwidth selection fordensity estimation, J. Am. Stat. Assoc. 91(1996) 401-407. [23] J.J. Downs, E.F. Vogel, A plant-wide industrial process control problem, Comput. Chem. Eng. 17(1993) 245-255. [24] Z. Ge, Quality prediction and analysis for large-scale processes based on multi-level principal componet modeling strategy, Control. Eng. Pract. 31(2014) 9-23. [25] W.L. Xiong, Y.J. Li, Y.J. Zhao, B. Huang, Adaptive soft sensor based on time difference gaussian process regression with local time-delay reconstruction, Chem. Eng. Res. Des. 117(2017) 670-680. [26] X. Yuan, L. Ye, L. Bao, Z. Ge, Z. Song, Nonlinear feature extraction for soft sensor modeling based on weighted probabilistic PCA, Chemom. Intell. Lab. Syst. 147(2015) 167-175. [27] B. Bidar, J. Sadeghi, F. Shahraki, M. Khalilipour, Data-driven soft sensor approach for online quality prediction using state dependent parameter models, Chemom. Intell. Lab. Syst. 162(2015) 130-141. [28] Z. Ge, Process data analytics via probablitistic latent variable models:a tutorial review, Ind. Eng. Chem. Res. 57(2018) 1246-1266. |