[1] F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters:A review, J. Environ. Manag. 92(2011) 407-418. [2] J. Castelblanque, F. Salimbeni, NF and RO membranes for the recovery and reuse of water and concentrated metallic salts from waste water produced in the electroplating process, Desalination. 167(2004) 65-73. [3] R. Sierra-Alvarez, J. Hollingsworth, M.S. Zhou, Removal of copper in an integrated sulfate reducing bioreactor-crystallization reactor system, Environ. Sci. Technol. 41(2007) 1426-1431. [4] A.L. Ahmad, B.S. Ooi, A study on acid reclamation and copper recovery using low pressure nanofiltration membrane, Chem. Eng. J. 156(2010) 257-263. [5] B.R. Stern, M. Solioz, D. Krewski, P. Aggett, T.-C. Aw, S. Baker, K. Crump, M. Dourson, L. Haber, R. Hertzberg, Copper and human health:biochemistry, genetics, and strategies for modeling dose-response relationships, J. Toxicol. Environ. Heal. Part B. 10(2007) 157-222. [6] F. Edition, Guidelines for drinking-water quality, WHO Chron. 38(2011) 104-108. [7] W.H. Organization, Copper in Drinking-Water Background Document for Development of WHO Guidelines for Drinking-Water Quality, 2011. [8] S. Vasudevan, M.A. Oturan, Electrochemistry:as cause and cure in water pollution-An overview, Environ. Chem. Lett. 12(2014) 97-108. [9] C.-H. Hsieh, S.-L. Lo, W.-H. Kuan, C.-L. Chen, Adsorption of copper ions onto microwave stabilized heavy metal sludge, J. Hazard. Mater. 136(2006) 338-344. [10] M.H. Mahaninia, P. Rahimian, T. Kaghazchi, Modified activated carbons with amino groups and their copper adsorption properties in aqueous solution, Chinese J. Chem. Eng. 23(2015) 50-56. [11] J.I. Guijuan, B.A.O. Weiwei, G.A.O. Guimei, A.N. Baichao, Z.O.U. Haifeng, G.A.N. Shucai, Removal of Cu (II) from aqueous solution using a novel crosslinked aluminachitosan hybrid adsorbent, Chin. J. Chem. Eng. 20(2012) 641-648. [12] P.C.C. Siu, L.F. Koong, J. Saleem, J. Barford, G. McKay, Equilibrium and kinetics of copper ions removal from wastewater by ion exchange, Chin. J. Chem. Eng. 24(2016) 94-100. [13] R.P. van Hille, K. A. Peterson, A.E. Lewis, Copper sulphide precipitation in a fluidised bed reactor, Chem. Eng. Sci. 60(2005) 2571-2578. [14] Y. Li, X. Zeng, Y. Liu, S. Yan, Z. Hu, Y. Ni, Study on the treatment of copperelectroplating wastewater by chemical trapping and flocculation, Sep. Purif. Technol. 31(2003) 91-95. [15] N.K. Lazaridis, E.N. Peleka, T.D. Karapantsios, K.A. Matis, Copper removal from effluents by various separation techniques, Hydrometallurgy. 74(2004) 149-156. [16] E. Cséfalvay, V. Pauer, P. Mizsey, Recovery of copper from process waters by nanofiltration and reverse osmosis, Desalination. 240(2009) 132-142. [17] L. Feini, G. Zhang, M. Qin, H. Zhang, Performance of nanofiltration and reverse osmosis membranes in metal effluent treatment, Chin. J. Chem. Eng. 16(2008) 441-445. [18] W.J. Lau, A.F. Ismail, Nanofiltration Membranes:Synthesis, Characterization, and Applications, 1st ed. CRC Press, Boca Raton, 2016. [19] A. Figoli, A. Cassano, A. Criscuoli, M.S.I. Mozumder, M.T. Uddin, M.A. Islam, E. Drioli, Influence of operating parameters on the arsenic removal by nanofiltration, Water Res. 44(2010) 97-104. [20] A. Lhassani, M. Rumeau, D. Benjelloun, M. Pontie, Selective demineralization of water by nanofiltration application to the defluorination of brackish water, Water Res. 35(2001) 3260-3264. [21] T. Urase, J. Oh, K. Yamamoto, Effect of pH on rejection of different species of arsenic by nanofiltration, Desalination 117(1998) 11-18. [22] K. Karakulski, M. Gryta, A. Morawski, Membrane processes used for separation of effluents from wire productions, Chem. Pap. 63(2009) 205-211. [23] T. Urase, M. Salequzzaman, S. Kobayashi, T. Matsuo, K. Yamamoto, N. Suzuki, Effect of high concentration of organic and inorganic matters in landfill leachate on the treatment of heavy metals in very low concentration level, Water Sci. Technol. 36(1997) 349-356. [24] D. Emadzadeh, M. Ghanbari, W.J. Lau, M. Rahbari-Sisakht, T. Matsuura, A.F. Ismail, B. Kruczek, Solvothermal synthesis of nanoporous TiO2:The impact on thin-film composite membranes for engineered osmosis application, Nanotechnology. 27(2016), 345702. [25] M. Ghanbari, D. Emadzadeh, W.J. Lau, H. Riazi, D. Almasi, A.F. Ismail, Minimizing structural parameter of thin film composite forward osmosis membranes using polysulfone/halloysite nanotubes as membrane substrates, Desalination. 377(2016) 152-162. [26] D. Emadzadeh, W.J. Lau, M. Rahbari-Sisakht, H. Ilbeygi, D. Rana, T. Matsuura, A.F. Ismail, Synthesis, modification and optimization of titanate nanotubes-polyamide thin film nanocomposite (TFN) membrane for forward osmosis (FO) application, Chem. Eng. J. 281(2015) 243-251. [27] W.N.A.S. Abdullah, W.-J. Lau, F. Aziz, D. Emadzadeh, A.F. Ismail, Performance of nanofiltration-like forward-osmosis membranes for aerobically treated palm oil mill effluent, Chem. Eng. Technol. 41(2018) 303-312. [28] J. Su, Q. Yang, J.F. Teo, T.-S. Chung, Cellulose acetate nanofiltration hollow fiber membranes for forward osmosis processes, J. Memb. Sci. 355(2010) 36-44. [29] L. Setiawan, R. Wang, K. Li, A.G. Fane, Fabrication of novel poly (amide-imide) forward osmosis hollow fiber membranes with a positively charged nanofiltrationlike selective layer, J. Memb. Sci. 369(2011) 196-205. [30] Q. Yang, K.Y. Wang, T.S. Chung, Dual-layer hollow fibers with enhanced flux as novel forward osmosis membranes for water production, Environ. Sci. Technol. 43(2009) 2800-2805. [31] D. Emadzadeh, W.J. Lau, T. Matsuura, A.F. Ismail, M. Rahbari-Sisakht, Synthesis and characterization of thin film nanocomposite forward osmosis membrane with hydrophilic nanocomposite support to reduce internal concentration polarization, J. Memb. Sci. 449(2014) 74-85. [32] J.O. Back, M. Spruck, M. Koch, L. Mayr, S. Penner, M. Rupprich, Poly (piperazineamide)/PES composite multi-channel capillary membranes for low-pressure nanofiltration, Polymers (Basel). 9(2017) 654. [33] W.J. Lau, T. Nooruan, W.N.A.S. Abdullah, F. Aziz, A.F. Ismail, Performance evaluation of hybrid coagulation/nanofiltration process for AT-POME treatment, Int. J. Eng. 31(2018) 1430-1436. [34] M. Liu, Z. Lü, Z. Chen, S. Yu, C. Gao, Comparison of reverse osmosis and nanofiltration membranes in the treatment of biologically treated textile effluent for water reuse, Desalination. 281(2011) 372-378. [35] A. Al-Amoudi, P. Williams, S. Mandale, R.W. Lovitt, Cleaning results of new and fouled nanofiltration membrane characterized by zeta potential and permeability, Sep. Purif. Technol. 54(2007) 234-240. [36] M.M. Motsa, B.B. Mamba, Forward Osmosis as a Pre-treatment Step for Seawater Dilution and Wastewater Reclamation, in:Osmotically Driven Membr, Process. Dev. Curr, Status, InTech, 2018. [37] W.J. Lau, A.F. Ismail, Theoretical studies on the morphological and electrical properties of blended PES/SPEEK nanofiltration membranes using different sulfonation degree of SPEEK, J. Memb. Sci. 334(2009) 30-42. [38] J.R. McCutcheon, R.L. McGinnis, M. Elimelech, Desalination by ammonia-carbon dioxide forward osmosis:Influence of draw and feed solution concentrations on process performance, J. Memb. Sci. 278(2006) 114-123. [39] C. Bellona, J.E. Drewes, P. Xu, G. Amy, Factors affecting the rejection of organic solutes during NF/RO treatment-A literature review, Water Res. 38(2004) 2795-2809. [40] S.C. Izah, E.I. Ohimain, T.C.N. Angaye, Potential thermal energy from palm oil processing solid wastes in Nigeria:Mills consumption and surplus quantification, Br, J. Renew. Energy. 1(2016) 38-44. [41] S. Suwanno, T. Rakkan, T. Yunu, N. Paichid, P. Kimtun, P. Prasertsan, K. Sangkharak, The production of biodiesel using residual oil from palm oil mill effluent and crude lipase from oil palm fruit as an alternative substrate and catalyst, Fuel. 195(2017) 82-87. [42] W.J. Lau, A.F. Ismail, P.S. Goh, N. Hilal, B.S. Ooi, Characterization methods of thin film composite nanofiltration membranes, Sep. Purif. Rev. 44(2015) 135-156. [43] N. Misdan, W.J. Lau, A.F. Ismail, T. Matsuura, Formation of thin film composite nanofiltration membrane:Effect of polysulfone substrate characteristics, Desalination. 329(2013) 9-18. [44] P.S. Singh, S.V. Joshi, J.J. Trivedi, C.V. Devmurari, A.P. Rao, P.K. Ghosh, Probing the structural variations of thin film composite RO membranes obtained by coating polyamide over polysulfone membranes of different pore dimensions, J. Memb. Sci. 278(2006) 19-25. [45] B.J.A. Tarboush, D. Rana, T. Matsuura, H.A. Arafat, R.M. Narbaitz, Preparation of thinfilm-composite polyamide membranes for desalination using novel hydrophilic surface modifying macromolecules, J. Memb. Sci. 325(2008) 166-175. [46] X. Wei, X. Kong, C. Sun, J. Chen, Characterization and application of a thin-film composite nanofiltration hollow fiber membrane for dye desalination and concentration, Chem. Eng. J. 223(2013) 172-182. [47] C.Y. Tang, Y.-N. Kwon, J.O. Leckie, Probing the nano-and micro-scales of reverse osmosis membranes-A comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential measurements, J. Memb. Sci. 287(2007) 146-156. [48] S. Mondal, S.R. Wickramasinghe, Produced water treatment by nanofiltration and reverse osmosis membranes, J. Memb. Sci. 322(2008) 162-170. [49] Y. Wang, L. Liu, J. Xue, J. Hou, L. Ding, H. Wang, Enhanced water flux through graphitic carbon nitride nanosheets membrane by incorporating polyacrylic acid, AIChE J. 64(2018) 2181-2188. [50] C.Y. Tang, Y.-N. Kwon, J.O. Leckie, Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes:II. Membrane physiochemical properties and their dependence on polyamide and coating layers, Desalination. 242(2009) 168-182. [51] R. Revanur, I. Roh, J.E. Klare, A. Noy, O. Bakajin, Thin Film Composite Membranes for Forward Osmosis, and their Preparation Methods, 2014. [52] J. Wei, C. Qiu, C.Y. Tang, R. Wang, A.G. Fane, Synthesis and characterization of flatsheet thin film composite forward osmosis membranes, J. Memb. Sci. 372(2011) 292-302. [53] B.-H. Jeong, E.M.V. Hoek, Y. Yan, A. Subramani, X. Huang, G. Hurwitz, Interfacial polymerization of thin film nanocomposites:A new concept for reverse osmosis membranes, J. Memb. Sci. 294(2007) 1-7. [54] R.J. Gohari, W.J. Lau, T. Matsuura, A.F. Ismail, Effect of surface pattern formation on membrane fouling and its control in phase inversion process, J. Memb. Sci. 446(2013) 326-331. [55] L. Huang, J.R. McCutcheon, Hydrophilic nylon 6, 6 nanofibers supported thin film composite membranes for engineered osmosis, J. Memb. Sci. 457(2014) 162-169. [56] M. Tian, C. Qiu, Y. Liao, S. Chou, R. Wang, Preparation of polyamide thin film composite forward osmosis membranes using electrospun polyvinylidene fluoride (PVDF) nanofibers as substrates, Sep. Purif. Technol. 118(2013) 727-736. [57] Z. Wang, J. Zheng, J. Tang, X. Wang, Z. Wu, A pilot-scale forward osmosis membrane system for concentrating low-strength municipal wastewater:Performance and implications, Sci. Rep. 6(2016), 21653. [58] M. Obaid, Z.K. Ghouri, O.A. Fadali, K.A. Khalil, A.A. Almajid, N.A.M. Barakat, Amorphous SiO2 NP-incorporated poly (vinylidene fluoride) electrospun nanofiber membrane for high flux forward osmosis desalination, ACS Appl. Mater. Interfaces 8(2016) 4561-4574. |