中国化学工程学报 ›› 2020, Vol. 28 ›› Issue (8): 2037-2050.DOI: 10.1016/j.cjche.2020.04.003
Ranran Wu1, Haiyan Song1, Yuanming Wang1,2, Lei Wang3, Zhiguang Zhu1,2
收稿日期:
2020-01-14
修回日期:
2020-03-13
出版日期:
2020-08-28
发布日期:
2020-09-19
通讯作者:
Zhiguang Zhu
基金资助:
Ranran Wu1, Haiyan Song1, Yuanming Wang1,2, Lei Wang3, Zhiguang Zhu1,2
Received:
2020-01-14
Revised:
2020-03-13
Online:
2020-08-28
Published:
2020-09-19
Contact:
Zhiguang Zhu
Supported by:
摘要: Enzyme cascade reactions play significant roles in bioelectrochemical processes because they permit more complex reactions. Co-immobilization of multienzyme on the electrode could help to facilitate substrate/intermediate transfer among different enzymes and electron transfer from enzyme active sites to the electrode with high stability and retrievability. Different co-immobilization strategies to construct multienzyme bioelectrodes have been widely reported, however, up to now, they have barely been reviewed. In this review, we focus on recent state-of-the-art techniques for constructing co-immobilized multienzyme electrodes including random and positional co-immobilization. Particular attention is given to strategies such as multienzyme complex and surface display. Cofactor co-immobilization on the electrode is also crucial for the enhancement of catalytic reaction and electron transfer, yet, few studies have been reported. The up-to-date advances in bioelectrochemical applications of multienzyme bioelectrodes are also presented. Finally, key challenges and future perspectives are discussed.
Ranran Wu, Haiyan Song, Yuanming Wang, Lei Wang, Zhiguang Zhu. Multienzyme co-immobilization-based bioelectrode: Design of principles and bioelectrochemical applications[J]. 中国化学工程学报, 2020, 28(8): 2037-2050.
Ranran Wu, Haiyan Song, Yuanming Wang, Lei Wang, Zhiguang Zhu. Multienzyme co-immobilization-based bioelectrode: Design of principles and bioelectrochemical applications[J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2037-2050.
[1] J. Cui, Y. Feng, T. Lin, Z. Tan, C. Zhong, S. Jia, Mesoporous metal-organic framework with well-defined cruciate flower-like morphology for enzyme immobilization, ACS Appl. Mater. Interfaces 9(12) (2017) 10587-10594. [2] J. Shaeri, I. Wright, E.B. Rathbone, R. Wohlgemuth, J.M. Woodley, Characterization of enzymatic D-xylulose 5-phosphate synthesis, Biotechnol. Bioeng. 101(4) (2008) 761-767. [3] S.S. Sun, X.L. Wei, C. You. Grosser, et al., Design of an in vitro biocatalytic cascade for the manufacture of islatravir, Science 366(6470) (2019) 1255-1259. [12] J. Shi, Y. Wu, S. Zhang, Y. Tian, D. Yang, Z. Jiang, Bioinspired construction of multienzyme catalytic systems, Chem. Soc. Rev. 47(12) (2018) 4295-4313. [13] C. Mateo, J.M. Palomo, G. Fernandez-Lorente, J.M. Guisan, R. Fernandez-Lafuente, Improvement of enzyme activity, stability and selectivity via immobilization techniques, Enzyme Microb. Technol. 40(6) (2007) 1451-1463. [14] S. Ren, C. Li, X. Jiao, S. Jia, Y. Jiang, M. Bilal, J. Cui, Recent progress in multienzymes co-immobilization and multienzyme system applications, Chem. Eng. J. 373(2019) 1254-1278. [15] S. Schoffelen, J.C.M. van Hest, Multi-enzyme systems:bringing enzymes together in vitro, Soft Matter. 8(6) (2012) 1736-1746. [16] Y.H.P. Zhang, Simpler Is Better:High-yield and potential low-cost biofuels production through cell-free synthetic pathway biotransformation (SyPaB), ACS Catal. 1(9) (2011) 998-1009. [17] E.T. Hwang, S. Lee, Multienzymatic cascade reactions via enzyme complex by immobilization, ACS Catal. 9(5) (2019) 4402-4425. [18] C. Chen, Q. Xie, D. Yang, H. Xiao, Y. Fu, Y. Tan, S. Yao, Recent advances in electrochemical glucose biosensors:A review, RSC Adv. 3(14) (2013) 4473-4491. [19] L. Zhang, J. Liu, Z. Fu, L. Qi, A wearable biosensor based on bienzyme gel-membrane for sweat lactate monitoring by mounting on eyeglasses, J. Nanosci. Nanotechnol. 20(3) (2020) 1495-1503. [20] B. Zou, Y. Chu, J. Xia, Monocrotophos detection with a bienzyme biosensor based on ionic-liquid-modified carbon nanotubes, Anal. Bioanal. Chem. 411(13) (2019) 2905-2914. [21] S. Alim, A.K.M. Kafi, J. Rajan, M.M. Yusoff, Application of polymerized multiporous nanofiber of SnO2 for designing a bienzyme glucose biosensor based on HRP/GOx, Int. J. Biol. Macromol. 123(2019) 1028-1034. [22] B. Alkotaini, S. Abdellaoui, K. Hasan, M. Grattieri, T. Quah, R. Cai, M.Y. Yuan, S.D. Minteer, Sustainable bioelectrosynthesis of the bioplastic polyhydroxybutyrate:Overcoming substrate requirement for NADH regeneration, ACS Sustain. Chem. Eng. 6(4) (2018) 4909-4915. [23] L. Wang, W. Gong, F. Wang, Z. Yu, Z. Chen, Efficient bienzyme nanocomposite film for chiral recognition of l-tryptophan, l-phenylalanine and l-tyrosine, Anal. Methods 8(17) (2016) 3481-3487. [24] E. Vargas, M.A. Ruiz, F.J. Ferrero, S. Campuzano, V. Ruiz-Valdepenas Montiel, A.J. Reviejo, J.M. Pingarron, Automatic bionalyzer using an integrated amperometric biosensor for the determination of L-malic acid in wines, Talanta 158(2016) 6-13. [25] H. Sakamoto, T. Komatsu, K. Yamasaki, T. Satomura, S.I. Suye, Design of a multi-enzyme reaction on an electrode surface for an L-glutamate biofuel anode, Biotechnol. Lett. 39(2) (2017) 235-240. [26] Y. Hirano, M. Ikegami, K. Kowata, Y. Komatsu, Bienzyme reactions on cross-linked DNA scaffolds for electrochemical analysis, Bioelectrochemistry 113(2017) 15-19. [27] U. Schröder, Self-assembling enzyme networks-A new path towards multistep bioelectrocatalytic systems, Angew. Chem. Int. Ed. 52(13) (2013) 3568-3569. [28] F. Jia, B. Narasimhan, S. Mallapragada, Materials-based strategies for multi-enzyme immobilization and co-localization:A review, Biotechnol. Bioeng. 111(2) (2014) 209-222. [29] T. Satomura, K. Horinaga, S. Tanaka, E. Takamura, H. Sakamoto, H. Sakuraba, T. Ohshima, S.I. Suye, Construction of a novel bioanode for amino acid powered fuel cells through an artificial enzyme cascade pathway, Biotechnol. Lett. 41(4-5) (2019) 605-611. [30] M. Christwardana, Y.J. Chung, Y. Kwon, Co-immobilization of glucose oxidase and catalase for enhancing the performance of a membraneless glucose biofuel cell operated under physiological conditions, Nanoscale 9(5) (2017) 1993-2002. [31] F. Gao, M. Hu, S. Li, Q. Zhai, Y. Jiang, Positional orientating co-immobilization of bienzyme CPO/GOx on mesoporous TiO2 thin film for efficient cascade reaction, Bioprocess Biosyst. Eng. 42(6) (2019) 1065-1075. [32] C. Agnès, B. Reuillard, A. Le Goff, M. Holzinger, S. Cosnier, A double-walled carbon nanotube-based glucose/H2O2 biofuel cell operating under physiological conditions, Electrochem. Commun. 34(2013) 105-108. [33] K. Elouarzaki, M. Bourourou, M. Holzinger, A. Le Goff, R.S. Marks, S. Cosnier, Freestanding HRP-GOx redox buckypaper as an oxygen-reducing biocathode for biofuel cell applications, Energ. Environ. Sci. 8(7) (2015) 2069-2074. [34] W. Jia, C. Jin, W. Xia, M. Muhler, W. Schuhmann, L. Stoica, Glucose oxidase/horseradish peroxidase co-immobilized at a CNT-modified graphite electrode:Towards potentially implantable biocathodes, Chemistry 18(10) (2012) 2783-2786. [35] S. Xu, S.D. Minteer, Enzymatic biofuel cell for oxidation of glucose to CO2, ACS Catal. 2(1) (2012) 91-94. [36] L. Zhu, R. Yang, J. Zhai, C. Tian, Bienzymatic glucose biosensor based on coimmobilization of peroxidase and glucose oxidase on a carbon nanotubes electrode, Biosens. Bioelectron. 23(4) (2007) 528-535. [37] J. Pilas, H. Iken, T. Selmer, M. Keusgen, M.J. Schöning, Development of a multi-parameter sensor chip for the simultaneous detection of organic compounds in biogas processes, Phy. Status Solidi (A) 212(6) (2015) 1306-1312. [38] B. Dalkiran, C. Kaçar, P.E. Erden, E. Kiliç, Amperometric xanthine biosensors based on chitosan-Co3O4-multiwall carbon nanotube modified glassy carbon electrode, Sensor. Actuat. B:Chem. 200(2014) 83-91. [39] F. Wang, W. Gong, L. Wang, Z. Chen, Enhanced amperometric response of a glucose oxidase and horseradish peroxidase based bienzyme glucose biosensor modified with a film of polymerized toluidine blue containing reduced graphene oxide, Microchim. Acta 182(11-12) (2015) 1949-1956. [40] R. Sakuta, K. Takeda, T. Ishida, K. Igarashi, M. Samejima, N. Nakamura, H. Ohno, Multi-enzyme anode composed of FAD-dependent and NAD-dependent enzymes with a single ruthenium polymer mediator for biofuel cells, Electrochem. Commun. 56(2015) 75-78. [41] Y. Chung, D.C. Tannia, Y. Kwon, Glucose biofuel cells using bi-enzyme catalysts including glucose oxidase, horseradish peroxidase and terephthalaldehyde crosslinker, Chem. Eng. J. 334(2018) 1085-1092. [42] A. Boujakhrout, E. Sánchez, P. Díez, A. Sánchez, P. Martínez-Ruiz, C. Parrado, J.M. Pingarrón, R. Villalonga, Single-walled carbon nanotubes/au-mesoporous silica janus nanoparticles as building blocks for the preparation of a bienzyme biosensor, ChemElectroChem 2(11) (2015) 1735-1741. [43] Y. Zhang, M.A. Arugula, M. Wales, J. Wild, A.L. Simonian, A novel layer-by-layer assembled multi-enzyme/CNT biosensor for discriminative detection between organophosphorus and non-organophosphrus pesticides, Biosens. Bioelectron. 67(2015) 287-295. [44] A. Ruff, J. Szczesny, N. Marković, F. Conzuelo, S. Zacarias, I.A.C. Pereira, W. Lubitz, W. Schuhmann, A fully protected hydrogenase/polymer-based bioanode for high-performance hydrogen/glucose biofuel cells, Nat. Commun. 9(2018) 3675. [45] J. Liu, L. Zhang, C. Fu, Os-complex-based amperometric bienzyme biosensor for continuous determination of lactate in saliva, Anal. Methods 7(15) (2015) 6158-6164. [46] P. Gimenez-Gomez, M. Gutierrez-Capitan, F. Capdevila, A. Puig-Pujol, C. FernandezSanchez, C. Jimenez-Jorquera, Robust l-malate bienzymatic biosensor to enable the on-site monitoring of malolactic fermentation of red wines, Anal. Chim. Acta 954(2017) 105-113. [47] M. Dai, T. Huang, L. Chao, Q. Xie, Y. Tan, C. Chen, W. Meng, Horseradish peroxidasecatalyzed polymerization of L-DOPA for mono-/bi-enzyme immobilization and amperometric biosensing of H2O2 and uric acid, Talanta 149(2016) 117-123. [48] N.J. Ronkainen, H.B. Halsall, W.R. Heineman, Electrochemical biosensors, Chem. Soc. Rev. 39(5) (2010) 1747-1763. [49] P. Zucca, E. Sanjust, Inorganic materials as supports for covalent enzyme immobilization:methods and mechanisms, Molecules 19(9) (2014) 14139-14194. [50] M. Mathew, N. Sandhyarani, Detection of glucose using immobilized bienzyme on cyclic bisureas-gold nanoparticle conjugate, Anal. Biochem. 459(2014) 31-38. [51] M. Delvaux, A. Walcarius, S. Demoustier-Champagne, Bienzyme HRP-GOx-modified gold nanoelectrodes for the sensitive amperometric detection of glucose at low overpotentials, Biosens. Bioelectron. 20(8) (2005) 1587-1594. [52] A. Hatefi-Mehrjardi, Bienzyme self-assembled monolayer on gold electrode:An amperometric biosensor for carbaryl determination, Electrochim. Acta 114(2013) 394-402. [53] H. Zhang, R. Liu, J. Zheng, Selective determination of cholesterol based on cholesterol oxidase-alkaline phosphatase bienzyme electrode, Analyst 137(22) (2012) 5363-5367. [54] M. Gamella, S. Campuzano, F. Conzuelo, J.A. Curiel, R. Munoz, A.J. Reviejo, J.M. Pingarron, Integrated multienzyme electrochemical biosensors for monitoring malolactic fermentation in wines, Talanta 81(3) (2010) 925-933. [55] Y.D. Han, Y.H. Jang, H.C. Yoon, Cascadic multienzyme reaction-based electrochemical biosensors, Adv. Biochem. Eng. Biotechnol. 140(2014) 221-251. [56] A. Sassolas, L.J. Blum, B.D. Leca-Bouvier, Immobilization strategies to develop enzymatic biosensors, Biotechnol. Adv. 30(3) (2012) 489-511. [57] R. Wu, C. Ma, Y.C. Yong, Y.H.P. Job Zhang, Z. Zhu, Composition and distribution of internal resistance in an enzymatic fuel cell and its dependence on cell design and operating conditions, RSC Adv. 9(13) (2019) 7292-7300. [58] J.H. Lee, Y.D. Han, S.Y. Song, T.D. Kim, H.C. Yoon, Biosensor for organophosphorus pesticides based on the acetylcholine esterase inhibition mediated by choline oxidase bioelectrocatalysis, BioChip J. 4(3) (2010) 223-229. [59] A. Chaubey, K.K. Pande, V.S. Singh, B.D. Malhotra, Co-immobilization of lactate oxidase and lactate dehydrogenase on conducting polyaniline films, Anal. Chim. Acta 407(1-2) (2000) 97-103. [60] S.K. Sharma, R. Singhal, B.D. Malhotra, N. Sehgal, A. Kumar, Lactose biosensor based on Langmuir-Blodgett films of poly(3-hexyl thiophene), Biosens. Bioelectron. 20(3) (2004) 651-657. [61] D.R. Jeykumari, S.S. Narayanan, Fabrication of bienzyme nanobiocomposite electrode using functionalized carbon nanotubes for biosensing applications, Biosens. Bioelectron. 23(11) (2008) 1686-1693. [62] X. Chen, J. Zhu, R. Tian, C. Yao, Bienzymatic glucose biosensor based on three dimensional macroporous ionic liquid doped sol-gel organic-inorganic composite, Sensor. Actuat. B:Chem. 163(1) (2012) 272-280. [63] D. Sokic-Lazic, S.D. Minteer, Pyruvate/air enzymatic biofuel cell capable of complete oxidation, Electrochem. Solid-State Lett. 12(9) (2009) F26-F28. [64] D. Sokic-Lazic, A.R. de Andrade, S.D. Minteer, Utilization of enzyme cascades for complete oxidation of lactate in an enzymatic biofuel cell, Electrochim. Acta 56(28) (2011) 10772-10775. [65] R. Monošík, M. Stred'anský, G. Greif, E. Šturdík, Comparison of biosensors based on gold and nanocomposite electrodes for monitoring of malic acid in wine, Cent. Eur. J. Chem. 10(1) (2011) 157-164. [66] B. Wang, X. Ji, H. Zhao, N. Wang, X. Li, R. Ni, Y. Liu, An amperometric beta-glucan biosensor based on the immobilization of bi-enzyme on Prussian blue-chitosan and gold nanoparticles-chitosan nanocomposite films, Biosens. Bioelectron. 55(2014) 113-119. [67] R. Monošík, M. Stred'anský, E. Šturdík, A biosensor utilizing l-glutamate dehydrogenase and diaphorase immobilized on nanocomposite electrode for determination of L-glutamate in food samples, Food Anal. Method. 6(2) (2012) 521-527. [68] J. Singh, A. Roychoudhury, M. Srivastava, V. Chaudhary, R. Prasanna, D.W. Lee, S.H. Lee, B.D. Malhotra, Highly efficient bienzyme functionalized biocompatible nanostructured nickel ferrite-chitosan nanocomposite platform for biomedical application, J. Phys. Chem. C 117(16) (2013) 8491-8502. [69] R. Monosik, D. Ukropcova, M. Stredansky, E. Sturdik, Multienzymatic amperometric biosensor based on gold and nanocomposite planar electrodes for glycerol determination in wine, Anal. Biochem. 421(1) (2012) 256-261. [70] K.M. Manesh, P. Santhosh, A.I. Gopalan, K.-P. Lee, Silica-polyaniline based bienzyme cholesterol biosensor:Fabrication and characterization, Electroanal. 22(20) (2010) 2467-2474. [71] M. Shao, M.N. Zafar, C. Sygmund, D.A. Guschin, R. Ludwig, C.K. Peterbauer, W. Schuhmann, L. Gorton, Mutual enhancement of the current density and the coulombic efficiency for a bioanode by entrapping bi-enzymes with Os-complex modified electrodeposition paints, Biosens. Bioelectron. 40(1) (2013) 308-314. [72] F. Li, Z. Wang, Y. Feng, Construction of bienzyme biosensors based on combination of the one-step electrodeposition and covalent-coupled sol-gel process, Sci. China Ser. B:Chem. 52(12) (2009) 2269-2274. [73] M. Gu, J. Wang, Y. Tu, J. Di, Fabrication of reagentless glucose biosensors:A comparison of mono-enzyme GOD and bienzyme GOD-HRP systems, Sensor. Actuat. B:Chem. 148(2) (2010) 486-491. [74] A. Zebda, C. Gondran, A. Le Goff, M. Holzinger, P. Cinquin, S. Cosnier, Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes, Nat. Commun. 2(2011) 370. [75] B. Reuillard, A. Le Goff, C. Agnes, M. Holzinger, A. Zebda, C. Gondran, K. Elouarzaki, S. Cosnier, High power enzymatic biofuel cell based on naphthoquinone-mediated oxidation of glucose by glucose oxidase in a carbon nanotube 3D matrix, Phys. Chem. Chem. Phys. 15(14) (2013) 4892-4896. [76] K. Yamamoto, T. Matsumoto, S. Shimada, T. Tanaka, A. Kondo, Starchy biomasspowered enzymatic biofuel cell based on amylases and glucose oxidase multiimmobilized bioanode, Nat. Biotechnol. 30(5) (2013) 531-535. [77] V. Serafín, L. Agüí, P. Yáñez-Sedeño, J.M. Pingarrón, Glucosinolate amperometric bienzyme biosensor based on carbon nanotubes-gold nanoparticles composite electrodes, Electroanalysis 21(13) (2009) 1527-1532. [78] B.W. Park, R. Zheng, K.A. Ko, B.D. Cameron, D.Y. Yoon, D.S. Kim, A novel glucose biosensor using bi-enzyme incorporated with peptide nanotubes, Biosens. Bioelectron. 38(1) (2012) 295-301. [79] S. Yadav, A. Kumar, C.S. Pundir, Amperometric creatinine biosensor based on covalently coimmobilized enzymes onto carboxylated multiwalled carbon nanotubes/polyaniline composite film, Anal. Biochem. 419(2) (2011) 277-283. [80] F. Mazzei, F. Botrè, G. Favero, Peroxidase based biosensors for the selective determination of D,L-lactic acid and L-malic acid in wines, Microchem. J. 87(1) (2007) 81-86. [81] Y. Huang, W. Wang, Z. Li, X. Qin, L. Bu, Z. Tang, Y. Fu, M. Ma, Q. Xie, S. Yao, J.M, Hu, Horseradish peroxidase-catalyzed synthesis of poly(thiophene-3-boronic acid) biocomposites for mono-/bi-enzyme immobilization and amperometric biosensing, Biosens. Bioelectron. 44(2013) 41-47. [82] B. Reuillard, A. Le Goff, M. Holzinger, S. Cosnier, Non-covalent functionalization of carbon nanotubes with boronic acids for the wiring of glycosylated redox enzymes in oxygen-reducing biocathodes, J. Mater. Chem. B 2(16) (2014) 2228-2232. [83] D.N. Tran, K.J. Balkus, Perspective of recent progress in immobilization of enzymes, ACS Catal. 1(8) (2011) 956-968. [84] S. Xu, H. Qi, S. Zhou, X. Zhang, C. Zhang, Mediatorless amperometric bienzyme glucose biosensor based on horseradish peroxidase and glucose oxidase cross-linked to multiwall carbon nanotubes, Microchim. Acta 181(5-6) (2014) 535-541. [85] Q. Lang, L. Yin, J. Shi, L. Li, L. Xia, A. Liu, Co-immobilization of glucoamylase and glucose oxidase for electrochemical sequential enzyme electrode for starch biosensor and biofuel cell, Biosens. Bioelectron. 51(2014) 158-163. [86] J. Liu, S. Sun, H. Shang, J. Lai, L. Zhang, Electrochemical biosensor based on bienzyme and carbon nanotubes incorporated into an Os-complex thin film for continuous glucose detection in human saliva, Electroanal. 28(9) (2016) 2016-2021. [87] F. Tasca, L. Gorton, M. Kujawa, I. Patel, W. Harreither, C.K. Peterbauer, R. Ludwig, G. Noll, Increasing the coulombic efficiency of glucose biofuel cell anodes by combination of redox enzymes, Biosens. Bioelectron. 25(7) (2010) 1710-1716. [88] Y.H. Kim, E. Campbell, J. Yu, S.D. Minteer, S. Banta, Complete oxidation of methanol in biobattery devices using a hydrogel created from three modified dehydrogenases, Angew. Chem. Int. Ed. 52(5) (2013) 1437-1440. [89] S. Hou, Z. Ou, Q. Chen, B. Wu, Amperometric acetylcholine biosensor based on selfassembly of gold nanoparticles and acetylcholinesterase on the sol-gel/multiwalled carbon nanotubes/choline oxidase composite-modified platinum electrode, Biosens. Bioelectron. 33(1) (2012) 44-49. [90] M. Christwardana, Combination of physico-chemical entrapment and crosslinking of low activity laccase-based biocathode on carboxylated carbon nanotube for increasing biofuel cell performance, Enzyme Microb. Technol. 106(2017) 1-10. [91] Z.Q. Wu, W.Z. Jia, K. Wang, J.J. Xu, H.Y. Chen, X.H. Xia, Exploration of two-enzyme coupled catalysis system using scanning electrochemical microscopy, Anal. Chem. 84(24) (2012) 10586-10592. [92] H. Chen, F. Xi, X. Gao, Z. Chen, X. Lin, Bienzyme bionanomultilayer electrode for glucose biosensing based on functional carbon nanotubes and sugar-lectin biospecific interaction, Anal. Biochem. 403(1-2) (2010) 36-42. [93] S.B. Adeloju, A.T. Lawal, Fabrication of a bilayer potentiometric phosphate biosensor by cross-link immobilization with bovine serum albumin and glutaraldehyde, Anal. Chim. Acta 691(1-2) (2011) 89-94. [94] R. Yasujima, K. Yasueda, T. Horiba, S. Komaba, Multi-enzyme immobilized anodes utilizing maltose fuel for biofuel cell applications, Chemelectrochem 5(16) (2018) 2271-2278. [95] U. Saxena, M. Das, S. Ahmad, L. Barbora, M. Borthakur, A. Verma, U. Bora, P. Goswami, Multiwalled carbon nanotube-based bi-enzyme electrode for total cholesterol estimation in human serum, J. Exp. Nanosci. 6(1) (2011) 84-95. [96] H.S. Mansur, A.A.P. Mansur, M.E. Marques, Multi-enzymatic Systems with Designed 3D Architectures for Constructing Food Bioanalytical Sensors, Food Anal. Method. 7(6) (2014) 1166-1178. [97] J. Fu, Y.R. Yang, A. Johnson-Buck, M. Liu, Y. Liu, N.G. Walter, N.W. Woodbury, H. Yan, Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm, Nat. Nanotechnol. 9(7) (2014) 531-536. [98] J. Fu, M. Liu, Y. Liu, N.W. Woodbury, H. Yan, Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures, J. Am. Chem. Soc. 134(12) (2012) 5516-5519. [99] G. Piperberg, O.I. Wilner, O. Yehezkeli, R. Tel-Vered, I. Willner, Control of bioelectrocatalytic transformations on DNA scaffolds, J. Am. Chem. Soc. 131(25) (2009) 8724-8725. [100] M. Mathesh, J. Liu, C.J. Barrow, W. Yang, Graphene-oxide-based enzyme nanoarchitectonics for substrate channeling, Chemistry 23(2) (2017) 304-311. [101] D. Meng, R. Wu, J. Wang, Z. Zhu, C. You, Acceleration of cellodextrin phosphorolysis for bioelectricity generation from cellulosic biomass by integrating a synthetic two-enzyme complex into an in vitro synthetic enzymatic biosystem, Biotechnol. Biofuels 12(2019) 267. [102] M. J. Moehlenbroc, M. T. Meredith, S. D. Minteer, Bioelectrocatalytic oxidation of glucose in CNT impregnated hydrogels:Advantages of synthetic enzymatic metabolon formation, ACS Catal. 2(1) (2011)17-25. [103] M.J. Moehlenbrock, T.K. Toby, L.N. Pelster, S.D. Minteer, Metabolon catalysts:An efficient model for multi-enzyme cascades at electrode surfaces, ChemCatChem 3(3) (2011) 561-570. [104] M.J. Moehlenbrock, T.K. Toby, A. Waheed, S.D. Minteer, Metabolon catalyzed pyruvate/air biofuel cell, J. Am. Chem. Soc. 132(18) (2010) 6288-6289. [105] A. Alshammari, M.G. Posner, A. Upadhyay, F. Marken, S. Bagby, A. Ilie, A modular bioplatform based on a versatile supramolecular multienzyme complex directly attached to graphene, ACS Appl. Mater. Interfaces 8(32) (2016) 21077-21088. [106] L. Li, B. Liang, F. Li, J. Shi, M. Mascini, Q. Lang, A. Liu, Co-immobilization of glucose oxidase and xylose dehydrogenase displayed whole cell on multiwalled carbon nanotube nanocomposite films modified electrode for simultaneous voltammetric detection of D-glucose and D-xylose, Biosens. Bioelectron. 42(2013) 156-162. [107] L. Amir, S.A. Carnally, J. Rayo, S. Rosenne, S.M. Yerushalmi, O. Schlesinger, M.M. Meijler, L. Alfonta, Surface display of a redox enzyme and its site-specific wiring to gold electrodes, J. Am. Chem. Soc. 135(1) (2013) 70-73. [108] A. Szczupak, D. Aizik, S. Morais, Y. Vazana, Y. Barak, E.A. Bayer, L. Alfonta, The electrosome:A surface-displayed enzymatic cascade in a biofuel cell's anode and a high-density surface-displayed biocathodic enzyme, Nanomaterials (Basel) 7(7) (2017) 153. [109] K. Bahartan, L. Amir, A. Israel, R.G. Lichtenstein, L. Alfonta, In situ fuel processing in a microbial fuel cell, ChemSusChem 5(9) (2012) 1820-1825. [110] F. Liu, S. Banta, W. Chen, Functional assembly of a multi-enzyme methanol oxidation cascade on a surface-displayed trifunctional scaffold for enhanced NADH production, Chem. Commun. (Camb) 49(36) (2013) 3766-3768. [111] H. Wu, C. Tian, X. Song, C. Liu, D. Yang, Z. Jiang, Methods for the regeneration of nicotinamide coenzymes, Green Chem. 15(7) (2013) 1773. [112] Y. Zhang, H. Hess, Toward rational design of high-efficiency enzyme cascades, ACS Catal. 7(9) (2017) 6018-6027. [113] J.P.H. Steven, D. Sprules, Stephen A. Wring, Robin Pittson, A reagentless, disposable biosensor for lactic acid based on a screen-printed carbon electrode containing Meldola's Blue and coated with lactate dehydrogenase, NAD+ and cellulose acetate, Anal. Chim. Acta 304(1995) 17-24. [114] J.P.H. Steven, D. Sprules, Robin Pittson, Stephen A. Wring, Evaluation of a new eisposable screen-printed sensor strip for the measurement of NADH and its modification to produce a lactate biosensor employing microliter volumes, Electroanal. 8(6) (1996) 539-543. [115] S.D. Sprules, I.C. Hartley, R. Wedge, J.P. Hart, R Pittson, A disposable reagentless screen-printed amperometric biosensor for the measurement of alcohol in beverages, Anal. Chim. Acta 329(1996) 215-221. [116] J.P. Hart, A.K. Abass, D.C. Cowell, A. Chappell, Development of a disposable amperometric NH4 biosensor based on a chemically modified screen-printed carbon electrode coated with glutamate dehydrogenase, 2-Oxoglutarate, and NADH, Electroanal. 11(1999) 406-411. [117] H. Zhou, Z. Zhang, P. Yu, L. Su, T. Ohsaka, L. Mao, Noncovalent attachment of NAD+ cofactor onto carbon nanotubes for preparation of integrated dehydrogenase-based electrochemical biosensors, Langmuir 26(8) (2010) 6028-6032. [118] H. Sakai, T. Nakagawa, Y. Tokita, T. Hatazawa, T. Ikeda, S. Tsujimura, K. Kano, A high-power glucose/oxygen biofuel cell operating under quiescent conditions, Energ. Environ. Sci. 2(1) (2009) 133-138. [119] S. Fujita, S. Yamanoi, K. Murata, H. Mita, T. Samukawa, T. Nakagawa, H. Sakai, Y. Tokita, A repeatedly refuelable mediated biofuel cell based on a hierarchical porous carbon electrode, Sci. Rep. 4(2014) 4937. [120] E.K. Amos Bardea, F. Andreas, Bu1ckmann, and Itamar Willner, NAD+-dependent enzyme electrodes:Electrical contact of cofactor-dependent enzymes and electrodes, J. Am. Chem. Soc. 119(39) (1997) 9114-9119. [121] B.L. Hassler, N. Kohli, J.G. Zeikus, I Lee, R.M. Worden, Renewable dehydrogenasebased interfaces for bioelectronic applications, Langmuir 23(2007) 7127-7133. [122] Y.M. Yan, O. Yehezkeli, I. Willner, Integrated, electrically contacted NAD(P)+-dependent enzyme-carbon nanotube electrodes for biosensors and biofuel cell applications, Chemistry 13(36) (2007) 10168-10175. [123] A. Mahadevan, T. Fernando, S. Fernando, Iron-sulfur-based single molecular wires for enhancing charge transport in enzyme-based bioelectronic systems, Biosens. Bioelectron. 78(2016) 477-482. [124] A. Mahadevan, S. Fernando, An improved glycerol biosensor with an Au-FeS-NADglycerol-dehydrogenase anode, Biosens. Bioelectron. 92(2017) 417-424. [125] H. Song, C. Ma, P. Liu, C. You, J. Lin, Z. Zhu, A hybrid CO2 electroreduction system mediated by enzyme-cofactor conjugates coupled with Cu nanoparticlecatalyzed cofactor regeneration, J. CO2 Util. 34(2019) 568-575. [126] X. Huang, L. Zhang, Z. Zhang, S. Guo, H. Shang, Y. Li, J. Liu, Wearable biofuel cells based on the classification of enzyme for high power outputs and lifetimes, Biosens. Bioelectron. (2019) 40-52124-125. [127] X. Yu, W. Lian, J. Zhang, H. Liu, Multi-input and -output logic circuits based on bioelectrocatalysis with horseradish peroxidase and glucose oxidase immobilized in multi-responsive copolymer films on electrodes, Biosens. Bioelectron. 80(2016) 631-639. [128] A. Poghossian, E. Katz, M.J. Schoning, Enzyme logic AND-Reset and OR-Reset gates based on a field-effect electronic transducer modified with multi-enzyme membrane, Chem. Commun. (Camb) 51(30) (2015) 6564-6567. [129] D. Liu, H. Liu, N. Hu, pH-, sugar-, and temperature-sensitive electrochemical switch amplified by enzymatic reaction and controlled by logic gates based on semiinterpenetrating polymer networks, J. Phys. Chem. B 116(5) (2012) 1700-1708. [130] V. Bocharova, T.K. Tam, J. Halamek, M. Pita, E. Katz, Reversible gating controlled by enzymes at nanostructured interface, Chem. Commun. (Camb) 46(12) (2010) 2088-2090. [131] A. Efrati, C.-H. Lu, D. Michaeli, R. Nechushtai, S. Alsaoub, W. Schuhmann, I. Willner, Assembly of photo-bioelectrochemical cells using photosystem I-functionalized electrodes, Nat. Energ. 1(2) (2016) 15021. [132] R. Marcus, N. Sutin, Electron transfers in chemistry and biology, BBA-Rev. Bioenergetics 811(1985) 265-322. [133] R.E. Sharp, S. Chapman, Mechanisms for regulating electron transfer in multi-centre redox proteins, BBA-Protein Struct. M. 1432(1999) 143-158. [134] J.R. Winkler, H.B. Gray, Long-range electron tunneling, J. Am. Chem. Soc. 136(8) (2014) 2930-2939. [135] Y. Song, L. Wan, Y. Wang, S. Zhao, H. Hou, L. Wang, Electron transfer and electrocatalytics of cytochrome c and horseradish peroxidase on DNA modified electrode, Bioelectrochemistry 85(2012) 29-35. [136] F. Lisdat, R. Dronov, H. Möhwald, F.W. Scheller, D.G. Kurth, Self-assembly of electro-active protein architectures on electrodes for the construction of biomimetic signal chains, Chem. Commun. (3) (2009) 274-283. [137] S. Rengaraj, R. Haddad, E. Lojou, N. Duraffourg, M. Holzinger, A. Le Goff, V. Forge, Interprotein electron transfer between FeS-protein nanowires and oxygentolerant NiFe hydrogenase, Angew. Chem. Int. Ed. 56(27) (2017) 7774-7778. [138] S. C. Feifel, A. Kapp, F. Lisdat, Protein multilayer architectures on electrodes for analyte detection, Adv. Biochem. Eng. Biotechnol., 140(2013)253-298. [139] D. Ciornii, M. Riedel, K.R. Stieger, S.C. Feifel, M. Hejazi, H. Lokstein, A. Zouni, F. Lisdat, Bioelectronic circuit on a 3D electrode architecture:Enzymatic catalysis interconnected with photosystem I, J. Am. Chem. Soc. 139(46) (2017) 16478-16481. [140] Y.H.P. Zhang, Production of biocommodities and bioelectricity by cell-free synthetic enzymatic pathway biotransformations:Challenges and opportunities, Biotechnol. Bioeng. 105(4) (2010) 663-677. [141] V.G. Eijsink, S. Gaseidnes, T.V. Borchert, B. van den Burg, Directed evolution of enzyme stability, Biomol. Eng. 22(1-3) (2005) 21-30. [142] A.R. Pereira, R.A.S. Luz, F.C.D.A. Lima, F.N. Crespilho, Protein oligomerization based on brønsted acid reaction, ACS Catal. 7(4) (2017) 3082-3088. [143] S. Krishnan, F.A. Armstrong, Order-of-magnitude enhancement of an enzymatic hydrogen-air fuel cell based on pyrenyl carbon nanostructures, Chem. Sci. 3(4) (2012) 1015-1023. [144] C. Di Bari, A. Goni-Urtiaga, M. Pita, S. Shleev, M.D. Toscano, R. Sainz, A.L. De Lacey, Fabrication of high surface area graphene electrodes with high performance towards enzymatic oxygen reduction, Electrochim. Acta 191(2016) 500-509. [145] S. Gentil, M. Carriere, S. Cosnier, S. Gounel, N. Mano, A. Le Goff, Direct electrochemistry of bilirubin oxidase from magnaporthe orizae on covalently-functionalized MWCNT for the design of high-performance oxygen-reducing biocathodes, Chemistry 24(33) (2018) 8404-8408. [146] M.T. Meredith, M. Minson, D. Hickey, K. Artyushkova, D.T. Glatzhofer, S.D. Minteer, Anthracene-modified multi-walled carbon nanotubes as direct electron transfer scaffolds for enzymatic xxygen reduction, ACS Catal. 1(12) (2011) 1683-1690. [147] X. Xiao, H.Q. Xia, R. Wu, L. Bai, L. Yan, E. Magner, S. Cosnier, E. Lojou, Z. Zhu, A. Liu, Tackling the challenges of enzymatic (bio)fuel cells, Chem. Rev. 119(16) (2019) 9509-9558. [148] G. Güven, R. Prodanovic, U. Schwaneberg, Protein engineering-An option for enzymatic biofuel cell design, Electroanal. 22(7-8) (2010) 765-775. [149] R.D. Milton, S.D. Minteer, Direct enzymatic bioelectrocatalysis:Differentiating between myth and reality, J. R. Soc. Interface 14(131) (2017) 20170253. [150] K. Elouarzaki, D. Cheng, A.C. Fisher, J.M. Lee, Coupling orientation and mediation strategies for efficient electron transfer in hybrid biofuel cells, Nat. Energ. 3(7) (2018) 574-581. [151] D. Ciornii, M. Riedel, K.R. Stieger, S.C. Feifel, M. Hejazi, H. Lokstein, A. Zouni, F. Lisdat, Bioelectronic circuit on a 3D electrode architecture:Enzymatic catalysis interconnected with photosystem I, J. Am. Chem. Soc. 139(46) (2017) 16478-16481. [152] H.R. Luckarift, B.S. Ku, J.S. Dordick, J.C. Spain, Silica-immobilized enzymes for multistep synthesis in microfluidic devices, Biotechnol. Bioeng. 98(3) (2007) 701-705. [153] X. Wu, J. Ge, C. Yang, M. Hou, Z. Liu, Facile synthesis of multiple enzyme-containing metal-organic frameworks in a biomolecule-friendly environment, Chem. Commun. (Camb) 51(69) (2015) 13408-13411. |
[1] | Xinlei Wei, Pingping Han, Chun You. Facilitation of cascade biocatalysis by artificial multi-enzyme complexes—A review[J]. 中国化学工程学报, 2020, 28(11): 2799-2809. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||